- 前言 在解决分类问题时,假如分类模型不够强大,对样本的分类结果就不会很理想。这时如果我们多找一些分类模型,让它们一起做决策,模型强度会不会高一点呢? 集成学习就是把多种分类器按策略组合起来,并根据所有分类器的分类结果做出最后的判断。 如下图,三种分类器的分类结果都有一点点错误,如果把三类组合在一起就可以完美地把所有形状都区... 前言 在解决分类问题时,假如分类模型不够强大,对样本的分类结果就不会很理想。这时如果我们多找一些分类模型,让它们一起做决策,模型强度会不会高一点呢? 集成学习就是把多种分类器按策略组合起来,并根据所有分类器的分类结果做出最后的判断。 如下图,三种分类器的分类结果都有一点点错误,如果把三类组合在一起就可以完美地把所有形状都区...
- 前言 语音系统中语音内容识别 ( ASR ) 的精准性,是影响智能语音产品发展的关键制约因素,用户query的文本,通常是由ASR系统将用户的语音命令转换而成,但由于技术上的原因,这些由ASR生成的文本可能包含错误,继而导致后续的用户意图理解出现偏差。如何利用NLP技术对ASR的query文本进行预处理纠错成了一个亟待解决的问题。 ... 前言 语音系统中语音内容识别 ( ASR ) 的精准性,是影响智能语音产品发展的关键制约因素,用户query的文本,通常是由ASR系统将用户的语音命令转换而成,但由于技术上的原因,这些由ASR生成的文本可能包含错误,继而导致后续的用户意图理解出现偏差。如何利用NLP技术对ASR的query文本进行预处理纠错成了一个亟待解决的问题。 ...
- 前言 随着移动互联网的兴起,网约车逐渐成为了大众常用的一个出行选择。但在网约车平台上经常出现这种情况:有时候乘客抱怨打不到车,与此同时其他地方的司机却没有订单接,长时间空驶。这就是典型的供需不平衡问题,即乘客和司机的自然分布出现了错配。这一方面让很多乘客的出行需求得不到满足,另一方面也让很多司机空驶等待,运力资源没有充分利用。如何解决... 前言 随着移动互联网的兴起,网约车逐渐成为了大众常用的一个出行选择。但在网约车平台上经常出现这种情况:有时候乘客抱怨打不到车,与此同时其他地方的司机却没有订单接,长时间空驶。这就是典型的供需不平衡问题,即乘客和司机的自然分布出现了错配。这一方面让很多乘客的出行需求得不到满足,另一方面也让很多司机空驶等待,运力资源没有充分利用。如何解决...
- 前言 transformer结构是google在17年的Attention Is All You Need论文中提出,在NLP的多个任务上取得了非常好的效果,可以说目前NLP发展都离不开transformer。最大特点是抛弃了传统的CNN和RNN,整个网络结构完全是由Attention机制组成。由于其出色性能以及对下游任务的友好性或者... 前言 transformer结构是google在17年的Attention Is All You Need论文中提出,在NLP的多个任务上取得了非常好的效果,可以说目前NLP发展都离不开transformer。最大特点是抛弃了传统的CNN和RNN,整个网络结构完全是由Attention机制组成。由于其出色性能以及对下游任务的友好性或者...
- 1、对卷积的困惑 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高级教程 卷积这个概念,很早以前就学过,但是一直没有搞懂。教科书上通常会给出定义,给出很多性质,也会用实例和图形... 1、对卷积的困惑 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高级教程 卷积这个概念,很早以前就学过,但是一直没有搞懂。教科书上通常会给出定义,给出很多性质,也会用实例和图形...
- 1. 引言 挑战与思路 搜索是大众点评App上用户进行信息查找的最大入口,是连接用户和信息的重要纽带。而用户搜索的方式和场景非常多样,并且由于对接业务种类多,流量差异大,为大众点评搜索(下文简称点评搜索)带来了巨大的挑战,具体体现在如下几个方面: 意图多样:用户查找的信息类型和方式多样。信息类型包括POI、榜单、UGC、攻略... 1. 引言 挑战与思路 搜索是大众点评App上用户进行信息查找的最大入口,是连接用户和信息的重要纽带。而用户搜索的方式和场景非常多样,并且由于对接业务种类多,流量差异大,为大众点评搜索(下文简称点评搜索)带来了巨大的挑战,具体体现在如下几个方面: 意图多样:用户查找的信息类型和方式多样。信息类型包括POI、榜单、UGC、攻略...
- 前言 CTR预估模型的特点: 毫无疑问这个任务的是个二分类任务,预测点击与否。 CTR 预估的特征一般是 用户的日志特征和画像特征,包含类别特征和数值型特征两种。 此任务的评估指标是 AUC 得分 或者 Logloss,facebook2014年的论文指出Logloss可能是相对来说较好的一个评估指标。 存在以下问题: ... 前言 CTR预估模型的特点: 毫无疑问这个任务的是个二分类任务,预测点击与否。 CTR 预估的特征一般是 用户的日志特征和画像特征,包含类别特征和数值型特征两种。 此任务的评估指标是 AUC 得分 或者 Logloss,facebook2014年的论文指出Logloss可能是相对来说较好的一个评估指标。 存在以下问题: ...
- 前言 个性化投放的"无人驾驶"平台何以自动化支持上千个场景的千人千面投放?商家、运营、小二,我们如何做到极致赋能和提效?面对旅行场景下用户需求低频、行为稀疏,特别是在营销活动大促期间,用户量迅速增长,用户的冷启动问题更加严峻,如何提高冷启动用户的推荐效果成为关键。另外,面对旅行场景下的丰富多样的的货品需求依赖关系,如何来组织和呈现给用... 前言 个性化投放的"无人驾驶"平台何以自动化支持上千个场景的千人千面投放?商家、运营、小二,我们如何做到极致赋能和提效?面对旅行场景下用户需求低频、行为稀疏,特别是在营销活动大促期间,用户量迅速增长,用户的冷启动问题更加严峻,如何提高冷启动用户的推荐效果成为关键。另外,面对旅行场景下的丰富多样的的货品需求依赖关系,如何来组织和呈现给用...
- 前言 随着大数据技术的进步,各种计算框架的涌现,数据仓库相关技术难题已经从离线数仓逐渐过渡到实时数仓,越来越多的企业对数据的实时性提出了严格的要求,如何满足企业的低延时的数据需求,如何看待批量处理和实时处理的关系,实时数仓应该如何分级,各家可能都有自己的理解,本文主要介绍网易的实时计算平台的建设实践以及网易对于实时数仓方面的一些规划及... 前言 随着大数据技术的进步,各种计算框架的涌现,数据仓库相关技术难题已经从离线数仓逐渐过渡到实时数仓,越来越多的企业对数据的实时性提出了严格的要求,如何满足企业的低延时的数据需求,如何看待批量处理和实时处理的关系,实时数仓应该如何分级,各家可能都有自己的理解,本文主要介绍网易的实时计算平台的建设实践以及网易对于实时数仓方面的一些规划及...
- 前言 如果我们想拿到一个句子的特征向量可以采用什么样的方式? 基于词袋模型(Bag of Words) Bag of Words : 主要思想是基于对句子中字出现的次数来构建句子向量,向量大小即为词表大小。可以采用的工具是gensim中的doc2bow TF-IDF:在BOW的基础上,考虑到每个字的重要程度,向量大小依然等于... 前言 如果我们想拿到一个句子的特征向量可以采用什么样的方式? 基于词袋模型(Bag of Words) Bag of Words : 主要思想是基于对句子中字出现的次数来构建句子向量,向量大小即为词表大小。可以采用的工具是gensim中的doc2bow TF-IDF:在BOW的基础上,考虑到每个字的重要程度,向量大小依然等于...
- 前言 大家可能经常会听到用户画像这个词,但是具体在做的时候又会觉得无从下手,或者认为只是常规的标签统计,这往往是一个误区。 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高... 前言 大家可能经常会听到用户画像这个词,但是具体在做的时候又会觉得无从下手,或者认为只是常规的标签统计,这往往是一个误区。 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高...
- 前言 KKT最优化条件是Karush[1939],以及Kuhn和Tucker[1951]先后独立发表出來的。这组最优化条件在Kuhn和Tucker发表之后才逐渐受到重视,因此许多情况下只记载成库恩塔克条件(Kuhn-Tucker conditions) 库恩塔克条件(Kuhn-Tucker conditions)是非线性规划领域里最... 前言 KKT最优化条件是Karush[1939],以及Kuhn和Tucker[1951]先后独立发表出來的。这组最优化条件在Kuhn和Tucker发表之后才逐渐受到重视,因此许多情况下只记载成库恩塔克条件(Kuhn-Tucker conditions) 库恩塔克条件(Kuhn-Tucker conditions)是非线性规划领域里最...
- 前言 在计算每一层的激活值时,我们要用到激活函数,之后才能确定这些激活值究竟是多少。根据每一层前面的激活、权重和偏置,我们要为下一层的每个激活计算一个值。但在将该值发送给下一层之前,我们要使用一个激活函数对这个输出进行缩放。 激活函数是神经网络中一个至关重要的部分。在这篇长文中,我将全面介绍六种不同的激活函数,并阐述它们各自... 前言 在计算每一层的激活值时,我们要用到激活函数,之后才能确定这些激活值究竟是多少。根据每一层前面的激活、权重和偏置,我们要为下一层的每个激活计算一个值。但在将该值发送给下一层之前,我们要使用一个激活函数对这个输出进行缩放。 激活函数是神经网络中一个至关重要的部分。在这篇长文中,我将全面介绍六种不同的激活函数,并阐述它们各自...
- 前言 文本生成,旨在利用NLP技术,根据给定信息产生特定目标的文本序列,应用场景众多,并可以通过调整语料让相似的模型框架适应不同应用场景。本文重点围绕Encoder-Decoder结构,列举一些以文本摘要生成或QA系统文本生成为实验场景的技术进展。 Seq2seq框架 2014年NLP界有两份重要的成果,Learning Phra... 前言 文本生成,旨在利用NLP技术,根据给定信息产生特定目标的文本序列,应用场景众多,并可以通过调整语料让相似的模型框架适应不同应用场景。本文重点围绕Encoder-Decoder结构,列举一些以文本摘要生成或QA系统文本生成为实验场景的技术进展。 Seq2seq框架 2014年NLP界有两份重要的成果,Learning Phra...
- 序 声明:以下是博主精心整理的机器学习和AI系列文章,博主后续会不断更新该领域的知识: 人工智能AI实战系列代码全解析 手把手教你ML机器学习算法源码全解析 有需要的小伙伴赶紧订阅吧。 人工智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们耳边:人工智能(Artificial Intelligence)、机器学习(Machine ... 序 声明:以下是博主精心整理的机器学习和AI系列文章,博主后续会不断更新该领域的知识: 人工智能AI实战系列代码全解析 手把手教你ML机器学习算法源码全解析 有需要的小伙伴赶紧订阅吧。 人工智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们耳边:人工智能(Artificial Intelligence)、机器学习(Machine ...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签