- 在未来,把数字世界带入每一辆车,就能真正实现智能的驾驶、智慧的空间、智慧的服务和智能的生产,让汽车产业与ICT技术加速融合,跨界合作共赢将成为新的趋势 在未来,把数字世界带入每一辆车,就能真正实现智能的驾驶、智慧的空间、智慧的服务和智能的生产,让汽车产业与ICT技术加速融合,跨界合作共赢将成为新的趋势
- 形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝。本文研究的是钛丝驱动技术,通过电来驱动钛丝的可靠性设计,方便大家在机械电子工业应用等领域快速有效的转化为科技成果。 形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝。本文研究的是钛丝驱动技术,通过电来驱动钛丝的可靠性设计,方便大家在机械电子工业应用等领域快速有效的转化为科技成果。
- 在LOAM的论文中,作者提到了要剔除两种异常点. - 平行点 - 遮挡点 但是在ALOAM的代码中并未写相关的功能. 如果想把论文中两种异常点的剔除机制加进去,可以参考下面的代码. 在LOAM的论文中,作者提到了要剔除两种异常点. - 平行点 - 遮挡点 但是在ALOAM的代码中并未写相关的功能. 如果想把论文中两种异常点的剔除机制加进去,可以参考下面的代码.
- 汽车产业整体的变革发展之路离不开车企与汽车云服务商的双向奔赴。 汽车产业整体的变革发展之路离不开车企与汽车云服务商的双向奔赴。
- ALOAM里面的优化问题的建模和求解都是通过Ceres 进行的,包括前端的帧间里程计和后端的地图优化. 相比于其它优化库(g20 gtsam),Ceres 一个很大的优点就是**自动求导功能** 通常一个优化器会帮助解决优化问题中大部分内容,但是残差的计算以及残差对优化变量的雅克比矩阵通常需要用户自己定义,而雅克比矩阵通常比较复杂,因此有的优化库如G2O,GTSAM会预先定义好一些常见的优化问 ALOAM里面的优化问题的建模和求解都是通过Ceres 进行的,包括前端的帧间里程计和后端的地图优化. 相比于其它优化库(g20 gtsam),Ceres 一个很大的优点就是**自动求导功能** 通常一个优化器会帮助解决优化问题中大部分内容,但是残差的计算以及残差对优化变量的雅克比矩阵通常需要用户自己定义,而雅克比矩阵通常比较复杂,因此有的优化库如G2O,GTSAM会预先定义好一些常见的优化问
- **什么是激光雷达的运动畸变 ?** 激光雷达的一帧数据是过去一周期内形成的所有数据,数据仅有一时间戳,而非某个时刻的数据,因此在这一帧时间内的激光雷达或者其载体通常会发生运动,因此,这一帧的原点不一致,会导致一些问题,这个问题就是**运动畸变** **什么是激光雷达的运动畸变 ?** 激光雷达的一帧数据是过去一周期内形成的所有数据,数据仅有一时间戳,而非某个时刻的数据,因此在这一帧时间内的激光雷达或者其载体通常会发生运动,因此,这一帧的原点不一致,会导致一些问题,这个问题就是**运动畸变**
- A-LOAM的cpp有四个,其中 kittiHelper.cpp 的作用是将kitti数据集转为rosbag 剩下的三个是作为 slam 的 部分,分别是: - laserMappin.cpp ++++ 当前帧到地图的优化 - laserOdometry.cpp ++++ 帧间里程计 - scanRegistration.cpp ++++ 前端li A-LOAM的cpp有四个,其中 kittiHelper.cpp 的作用是将kitti数据集转为rosbag 剩下的三个是作为 slam 的 部分,分别是: - laserMappin.cpp ++++ 当前帧到地图的优化 - laserOdometry.cpp ++++ 帧间里程计 - scanRegistration.cpp ++++ 前端li
- 前言YOLO、SSD、Fast R-CNN等模型在目标检测方面速度较快和精度较高,但是这些模型比较大,不太适合移植到移动端或嵌入式设备;轻量级模型 NanoDet-m,对单阶段检测模型三大模块(Head、Neck、Backbone)进行轻量化,目标加检测速度很快;模型文件大小仅几兆(小于4M)。 NanoDet作者开源代码地址:https://github.com/RangiLyu/nano... 前言YOLO、SSD、Fast R-CNN等模型在目标检测方面速度较快和精度较高,但是这些模型比较大,不太适合移植到移动端或嵌入式设备;轻量级模型 NanoDet-m,对单阶段检测模型三大模块(Head、Neck、Backbone)进行轻量化,目标加检测速度很快;模型文件大小仅几兆(小于4M)。 NanoDet作者开源代码地址:https://github.com/RangiLyu/nano...
- 汽车更像是一个数据中心。 汽车更像是一个数据中心。
- 智能网联汽车是车联网与智能汽车的交集,也是智能处理技术与高速网络通信技术的深度融合,国内初期的智能网联大多是基于V2X协同通信的智能交通应用,在美国,他们管它叫网联汽车,欧洲称之为协作式智能交通,日本叫网联驾驶,虽说法不一,但大体一致。 智能网联汽车是车联网与智能汽车的交集,也是智能处理技术与高速网络通信技术的深度融合,国内初期的智能网联大多是基于V2X协同通信的智能交通应用,在美国,他们管它叫网联汽车,欧洲称之为协作式智能交通,日本叫网联驾驶,虽说法不一,但大体一致。
- 10月22日,以“共建生态,智领未来—开启汽车新时代”为主题的世界智能网联汽车大会在北京开幕,华为轮值董事长徐直军在大会上发表了《聚焦ICT技术,使能车企“造好”车、造“好车”》的主题演讲。 10月22日,以“共建生态,智领未来—开启汽车新时代”为主题的世界智能网联汽车大会在北京开幕,华为轮值董事长徐直军在大会上发表了《聚焦ICT技术,使能车企“造好”车、造“好车”》的主题演讲。
- 形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝,可以通过电路驱动钛丝发生运动。 相比于传统的电机、电磁铁动力,钛丝是一种新型的动力元件。 钛丝驱动技术目前已经在航空航天、洲际导弹、无人机、手机、汽车、机器人等科技领域投入使用。 本文通过分享、普及钛丝驱动技术的可靠性设计 形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝,可以通过电路驱动钛丝发生运动。 相比于传统的电机、电磁铁动力,钛丝是一种新型的动力元件。 钛丝驱动技术目前已经在航空航天、洲际导弹、无人机、手机、汽车、机器人等科技领域投入使用。 本文通过分享、普及钛丝驱动技术的可靠性设计
- 形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝,可以通过电路驱动钛丝发生运动。 相比于传统的电机、电磁铁动力,钛丝是一种新型的动力元件。 钛丝驱动技术目前已经在航空航天、洲际导弹、无人机、手机、汽车、机器人等科技领域投入使用。 本文通过分享、普及钛丝驱动技术的可靠性设计,方便大 形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝,可以通过电路驱动钛丝发生运动。 相比于传统的电机、电磁铁动力,钛丝是一种新型的动力元件。 钛丝驱动技术目前已经在航空航天、洲际导弹、无人机、手机、汽车、机器人等科技领域投入使用。 本文通过分享、普及钛丝驱动技术的可靠性设计,方便大
- 形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝,可以通过电路驱动钛丝发生运动。 相比于传统的电机、电磁铁动力,钛丝是一种新型的动力元件。 钛丝驱动技术目前已经在航空航天、洲际导弹、无人机、手机、汽车、机器人等科技领域投入使用。 本文通过分享、普及钛丝驱动技术的可靠性设计 形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝,可以通过电路驱动钛丝发生运动。 相比于传统的电机、电磁铁动力,钛丝是一种新型的动力元件。 钛丝驱动技术目前已经在航空航天、洲际导弹、无人机、手机、汽车、机器人等科技领域投入使用。 本文通过分享、普及钛丝驱动技术的可靠性设计
- 形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝,可以通过电路驱动钛丝发生运动。 相比于传统的电机、电磁铁动力,钛丝是一种新型的动力元件。 钛丝驱动技术目前已经在航空航天、洲际导弹、无人机、手机、汽车、机器人等科技领域投入使用。 本文通过分享、普及钛丝驱动技术的可靠性设计 形状记忆合金(Shape memory alloy, SMA),也叫形态记忆合金、钛镍记忆合金,它是由Ti(钛)-Ni(镍)材料组成,经过多道工序制成的丝,我们简称钛丝,可以通过电路驱动钛丝发生运动。 相比于传统的电机、电磁铁动力,钛丝是一种新型的动力元件。 钛丝驱动技术目前已经在航空航天、洲际导弹、无人机、手机、汽车、机器人等科技领域投入使用。 本文通过分享、普及钛丝驱动技术的可靠性设计
上滑加载中
推荐直播
-
OpenHarmony应用开发之网络数据请求与数据解析
2025/01/16 周四 19:00-20:30
华为开发者布道师、南京师范大学泰州学院副教授,硕士研究生导师,开放原子教育银牌认证讲师
科技浪潮中,鸿蒙生态强势崛起,OpenHarmony开启智能终端无限可能。当下,其原生应用开发适配潜力巨大,终端设备已广泛融入生活各场景,从家居到办公、穿戴至车载。 现在,机会敲门!我们的直播聚焦OpenHarmony关键的网络数据请求与解析,抛开晦涩理论,用真实案例带你掌握数据访问接口,轻松应对复杂网络请求、精准解析Json与Xml数据。参与直播,为开发鸿蒙App夯实基础,抢占科技新高地,别错过!
回顾中 -
Ascend C高层API设计原理与实现系列
2025/01/17 周五 15:30-17:00
Ascend C 技术专家
以LayerNorm算子开发为例,讲解开箱即用的Ascend C高层API
回顾中
热门标签