- USGS VIIRS 蒸散量¶VIIRS 蒸散量 (ET) 数据集基于全球 ET 产品第 6 版,利用 VIIRS 热图像和全球天气数据集通过遥感获得。它采用 SSEBop(简化表面能量平衡操作版本)方法,最初由 Senay 等人提出。2007 年,Senay 于 2018 年推出了使用卫星湿度测定原理为操作应用量身定制的专门参数化。在 SSEBop 版本 6 中,Senay 等人概述了新... USGS VIIRS 蒸散量¶VIIRS 蒸散量 (ET) 数据集基于全球 ET 产品第 6 版,利用 VIIRS 热图像和全球天气数据集通过遥感获得。它采用 SSEBop(简化表面能量平衡操作版本)方法,最初由 Senay 等人提出。2007 年,Senay 于 2018 年推出了使用卫星湿度测定原理为操作应用量身定制的专门参数化。在 SSEBop 版本 6 中,Senay 等人概述了新...
- USGS MODIS 蒸散量¶这里提供的蒸散量 (ET) 数据集是遥感技术的结果,主要利用 MODIS 热图像和全球天气数据集。该数据集对应于 Climate Engine 使用的全球 ET 产品的第 5 版。它为 2003 年至 2023 年期间的 ET 时空动态提供了宝贵的见解。该数据集的基石是可操作的简化表面能量平衡 (SSEBop) 模型,由 Senay 等人精心详细介绍。(201... USGS MODIS 蒸散量¶这里提供的蒸散量 (ET) 数据集是遥感技术的结果,主要利用 MODIS 热图像和全球天气数据集。该数据集对应于 Climate Engine 使用的全球 ET 产品的第 5 版。它为 2003 年至 2023 年期间的 ET 时空动态提供了宝贵的见解。该数据集的基石是可操作的简化表面能量平衡 (SSEBop) 模型,由 Senay 等人精心详细介绍。(201...
- 雪数据同化系统(SNODAS)¶雪资料同化系统(SNODAS)是国家水文遥感业务中心(NOHRSC)精心开发的综合建模和资料同化系统。其主要目标是提供高度准确的积雪和相关参数估计,作为水文建模和分析的重要资源。SNODAS 通过吸收各种来源的数据来实现这一目标,包括卫星观测、地面测量和数值天气预报模型。这些不同的数据流在雪质量和能量平衡模型中经过彻底处理,最终产生雪水当量(SWE)、雪深、... 雪数据同化系统(SNODAS)¶雪资料同化系统(SNODAS)是国家水文遥感业务中心(NOHRSC)精心开发的综合建模和资料同化系统。其主要目标是提供高度准确的积雪和相关参数估计,作为水文建模和分析的重要资源。SNODAS 通过吸收各种来源的数据来实现这一目标,包括卫星观测、地面测量和数值天气预报模型。这些不同的数据流在雪质量和能量平衡模型中经过彻底处理,最终产生雪水当量(SWE)、雪深、...
- 简介全球2.5分分辨率最高和最低气温数据集包含了全球范围内的年度最高气温数据,每个像元大小为2.5分(~21 km2),最高气温单位为摄氏度。为研究全球大范围气候分异规律与全球变化提供基础的年最高气温空间分布数据,常应用于气候学、地理学等相关领域研究。前言 – 人工智能教程最高和最低气温数据集用于记录某个地区在一定时间内的最高和最低气温。它们的作用是:1. 提供天气信息:最高和最低气温数据... 简介全球2.5分分辨率最高和最低气温数据集包含了全球范围内的年度最高气温数据,每个像元大小为2.5分(~21 km2),最高气温单位为摄氏度。为研究全球大范围气候分异规律与全球变化提供基础的年最高气温空间分布数据,常应用于气候学、地理学等相关领域研究。前言 – 人工智能教程最高和最低气温数据集用于记录某个地区在一定时间内的最高和最低气温。它们的作用是:1. 提供天气信息:最高和最低气温数据...
- 简介生物气候是指生物和气候相互作用的结果,包括植物和动物对气候的影响,以及气候对生物的影响。生物气候研究的是生物、气候、土地和水等自然要素之间相互作用的过程,旨在探讨它们是如何互动并导致生态系统的变化的。生物气候对于理解全球气候变化、生物多样性和生态系统功能至关重要。生物气候变量来源于月温度和月降雨量,常用于物种分布模型和生态相关模型等。生物气候变量反映年度趋势、季节性、极端或限制性环境因素... 简介生物气候是指生物和气候相互作用的结果,包括植物和动物对气候的影响,以及气候对生物的影响。生物气候研究的是生物、气候、土地和水等自然要素之间相互作用的过程,旨在探讨它们是如何互动并导致生态系统的变化的。生物气候对于理解全球气候变化、生物多样性和生态系统功能至关重要。生物气候变量来源于月温度和月降雨量,常用于物种分布模型和生态相关模型等。生物气候变量反映年度趋势、季节性、极端或限制性环境因素...
- 简介生物气候变量来源于月温度和月降雨量,常用于物种分布模型和生态相关模型等。生物气候变量反映年度趋势、季节性、极端或限制性环境因素。前言 – 人工智能教程生物气候是指生物和气候之间的相互作用和影响。生物影响气候的方式有很多,包括植物的光合作用、蒸腾作用、放射作用、土壤微生物代谢作用等等,而气候也会对生物产生很大的影响,包括温度、湿度、日照、降水等等因素。生物和气候之间相互作用的结果,对整... 简介生物气候变量来源于月温度和月降雨量,常用于物种分布模型和生态相关模型等。生物气候变量反映年度趋势、季节性、极端或限制性环境因素。前言 – 人工智能教程生物气候是指生物和气候之间的相互作用和影响。生物影响气候的方式有很多,包括植物的光合作用、蒸腾作用、放射作用、土壤微生物代谢作用等等,而气候也会对生物产生很大的影响,包括温度、湿度、日照、降水等等因素。生物和气候之间相互作用的结果,对整...
- 简介土地覆盖分类产品(MCD12Q1.006)数据集是采用2001-2019年度获取的 MODIS Terra和Aqua反射率数据进行监督分类,并结合先验知识和辅助信息进一步完善特定类别得到的土地覆盖分类产品。Landsat-8卫星包含OLI(Operational Land Imager 陆地成像仪)和TIRS(Thermal Infrared Sensor 热红外传感器)两种传感器,每... 简介土地覆盖分类产品(MCD12Q1.006)数据集是采用2001-2019年度获取的 MODIS Terra和Aqua反射率数据进行监督分类,并结合先验知识和辅助信息进一步完善特定类别得到的土地覆盖分类产品。Landsat-8卫星包含OLI(Operational Land Imager 陆地成像仪)和TIRS(Thermal Infrared Sensor 热红外传感器)两种传感器,每...
- 简介:全球日值气象数据集(GLDAS Catchment Land Surface Model L4 daily 0.25 x 0.25 degree GRACE-DA1 V2.2 ,简称GLDAS_CLSM025_DA1_D),时空分辨率分别为1天、0.25度。GLDAS-2.2目前包括来自CLSM-F2.5和GRACE-DA的产品,其中GRACE-DA数据范围为2003年至今。根据与E... 简介:全球日值气象数据集(GLDAS Catchment Land Surface Model L4 daily 0.25 x 0.25 degree GRACE-DA1 V2.2 ,简称GLDAS_CLSM025_DA1_D),时空分辨率分别为1天、0.25度。GLDAS-2.2目前包括来自CLSM-F2.5和GRACE-DA的产品,其中GRACE-DA数据范围为2003年至今。根据与E...
- 简介:全球250米叶面指数产品由北京师范大学的肖志强教授团队生产,提供了多分辨率卫星遥感(MUSES)250m分辨率全球LAI产品,利用了MODIS地表反射率数据(MOD09Q1)生成的网格数据,时间分辨率为8天。数据中的每一个MOD09Q1像元包含了8天之内最佳L2G(栅格化后的L2级产品)观测数值,综合考虑了高观测覆盖、低视角、无云及云的阴影以及气溶胶浓度的影响。LAI即叶面积指数(l... 简介:全球250米叶面指数产品由北京师范大学的肖志强教授团队生产,提供了多分辨率卫星遥感(MUSES)250m分辨率全球LAI产品,利用了MODIS地表反射率数据(MOD09Q1)生成的网格数据,时间分辨率为8天。数据中的每一个MOD09Q1像元包含了8天之内最佳L2G(栅格化后的L2级产品)观测数值,综合考虑了高观测覆盖、低视角、无云及云的阴影以及气溶胶浓度的影响。LAI即叶面积指数(l...
- 简介:LandScan全球人口分布数据来自于East View Cartographic,由美国能源部橡树岭国家实验室(ORNL)开发。LandScan运用GIS和遥感等创新方法,是全球人口数据发布的社会标准,是全球最为准确、可靠,基于地理位置的,具有分布模型和最佳分辨率的全球人口动态统计分析数据。Landscan全球人口分布数据集提供了2000年至2017年的全球人口统计数据,空间分辨... 简介:LandScan全球人口分布数据来自于East View Cartographic,由美国能源部橡树岭国家实验室(ORNL)开发。LandScan运用GIS和遥感等创新方法,是全球人口数据发布的社会标准,是全球最为准确、可靠,基于地理位置的,具有分布模型和最佳分辨率的全球人口动态统计分析数据。Landscan全球人口分布数据集提供了2000年至2017年的全球人口统计数据,空间分辨...
- 简介:基于多源数据融合方法的中国1公里土地覆盖图(2000)在评价已经有土地覆盖数据的基础上,将2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植被型分类、中国1:10万冰川图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)进行融合,基于最大信任度原则进行决策,产生了新的IGBP分类系统的2000年1KM中国土地覆盖数据。前言 – 人工... 简介:基于多源数据融合方法的中国1公里土地覆盖图(2000)在评价已经有土地覆盖数据的基础上,将2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植被型分类、中国1:10万冰川图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)进行融合,基于最大信任度原则进行决策,产生了新的IGBP分类系统的2000年1KM中国土地覆盖数据。前言 – 人工...
- 简介全球30米年度不透水面产品(Global Impervious Surface Area, GISA)基于300多万景Landsat影像构建时序、光谱特征,利用MODIS和ESA_CCI自动生成多时序高置信度样本;全球按照2°地理格网划分,局部建立分类模型生产。该数据集是一个用来描述地球表面不透水面积分布的数据集。它基于高分辨率遥感影像,使用计算机算法分析得出。不透水面是指人工和自然... 简介全球30米年度不透水面产品(Global Impervious Surface Area, GISA)基于300多万景Landsat影像构建时序、光谱特征,利用MODIS和ESA_CCI自动生成多时序高置信度样本;全球按照2°地理格网划分,局部建立分类模型生产。该数据集是一个用来描述地球表面不透水面积分布的数据集。它基于高分辨率遥感影像,使用计算机算法分析得出。不透水面是指人工和自然...
- 简介中国雪深长时间序列数据集(1979-2020)提供1979年1月1日到2020年12月31日逐日的中国范围的积雪厚度分布数据,其空间分辨率为25km,是“中国雪深长时间序列数据集(1978-2012)”的升级版本。前言 – 人工智能教程用于反演该雪深数据集的原始数据来自美国国家雪冰数据中心(NSIDC)处理的SMMR(1979-1987年),SSM/I(1987-2007年)和SSMI... 简介中国雪深长时间序列数据集(1979-2020)提供1979年1月1日到2020年12月31日逐日的中国范围的积雪厚度分布数据,其空间分辨率为25km,是“中国雪深长时间序列数据集(1978-2012)”的升级版本。前言 – 人工智能教程用于反演该雪深数据集的原始数据来自美国国家雪冰数据中心(NSIDC)处理的SMMR(1979-1987年),SSM/I(1987-2007年)和SSMI...
- 数据爬取的不足有哪些,怎样改进? 数据爬取的不足有哪些,怎样改进?
- 简介:中国陆地生态系统服务价值空间分布产品是以全国陆地生态系统类型遥感分类为基础,生态系统类型包括:旱地、农田、针叶林、针阔混交林、阔叶林、灌木林、草原、灌草丛、草甸、湿地、荒漠、裸地、水系、冰川积雪、人工表面(包括建筑用地、工矿用地)15个二级类(农田、森林、草地、湿地、荒漠、水域6个一级类)。前言 – 人工智能教程参考谢高地等生态服务价值当量因子法,依据全国净初级生产力NPP、降水量... 简介:中国陆地生态系统服务价值空间分布产品是以全国陆地生态系统类型遥感分类为基础,生态系统类型包括:旱地、农田、针叶林、针阔混交林、阔叶林、灌木林、草原、灌草丛、草甸、湿地、荒漠、裸地、水系、冰川积雪、人工表面(包括建筑用地、工矿用地)15个二级类(农田、森林、草地、湿地、荒漠、水域6个一级类)。前言 – 人工智能教程参考谢高地等生态服务价值当量因子法,依据全国净初级生产力NPP、降水量...
上滑加载中
推荐直播
-
基于OpenHarmony的计算机学科人才培养经验分享
2024/11/28 周四 19:00-21:00
华为开发者布道师、兰州大学信息科学与工程学院教授周睿
老师们、同学们,这里有不容错过的精彩! 想了解计算机类人才培养存在哪些挑战?想知道OpenHarmony如何应用于人才培养?本次直播,为你分享基于它的科创实践、专业社团实践和教学实践途径,培养学术型、应用型和复合型精英人才。快来报名,开启提升之旅!
回顾中 -
全面解析华为云EI-API服务:理论基础与实践应用指南
2024/11/29 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播给大家带来的是理论与实践结合的华为云EI-API的服务介绍。从“主要功能,应用场景,实践案例,调用流程”四个维度来深入解析“语音交互API,文字识别API,自然语言处理API,图像识别API及图像搜索API”五大场景下API服务,同时结合实验,来加深开发者对API服务理解。
去报名 -
华为ICT大赛2024-2025 编程赛-鸿蒙技术赋能
2024/12/01 周日 14:00-18:00
赵小刚 武汉大学计算机学院软件工程系 副教授
本期直播将与您一起交流学习OpenHarmony 物联网应用开发,助力您在华为ICT大赛2024-2025编程赛中取得好成绩。
即将直播
热门标签