- @TOC 简介Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 【每日一读】每天浅读一篇论文,了解专业前沿知识,培养阅读习惯... @TOC 简介Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 【每日一读】每天浅读一篇论文,了解专业前沿知识,培养阅读习惯...
- 0. 前言最近尝试着去在SLAM当中使用深度学习,而目前的SLAM基本上是基于C++的,而现有的Pytorch、Tensorflow这类框架均是基于python的。所以如何将Python这类脚本文件来在C++这类可执行文件中运行,这是非常有必要去研究的,而网络上虽然存在有例子,但是很多都比较杂乱,所以本篇文章将网络上常用的方法进行整理,以供后面初学者有迹可循 1. 模型认识我们知道,目前基... 0. 前言最近尝试着去在SLAM当中使用深度学习,而目前的SLAM基本上是基于C++的,而现有的Pytorch、Tensorflow这类框架均是基于python的。所以如何将Python这类脚本文件来在C++这类可执行文件中运行,这是非常有必要去研究的,而网络上虽然存在有例子,但是很多都比较杂乱,所以本篇文章将网络上常用的方法进行整理,以供后面初学者有迹可循 1. 模型认识我们知道,目前基...
- @TOC 简介Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 【每日一读】每天浅读一篇论文,了解专业前沿知识,培养阅读习惯... @TOC 简介Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 【每日一读】每天浅读一篇论文,了解专业前沿知识,培养阅读习惯...
- FireFly RK3588开发板上烧录的Ubuntu20.04系统,在此基础上线部署下简单的Python版本yolov5代码,目前博主已全部转为C++版本了,并且转化了pt模型为rknn模型,调用npu进行推理,效果和速度都比原先Python代码好很多。本篇主要介绍如何部署和运行yolov5目标检测代码。 🍉1、安装anacondaAnaconda是流行的Python/R数据科学和机器学... FireFly RK3588开发板上烧录的Ubuntu20.04系统,在此基础上线部署下简单的Python版本yolov5代码,目前博主已全部转为C++版本了,并且转化了pt模型为rknn模型,调用npu进行推理,效果和速度都比原先Python代码好很多。本篇主要介绍如何部署和运行yolov5目标检测代码。 🍉1、安装anacondaAnaconda是流行的Python/R数据科学和机器学...
- @TOC 前言Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ 自我介绍 ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研。学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 知其然 知其所以然! 本文仅记录自己感兴趣的内... @TOC 前言Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ 自我介绍 ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研。学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 知其然 知其所以然! 本文仅记录自己感兴趣的内...
- @TOC 前言Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ 自我介绍 ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研。学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 知其然 知其所以然! 本文仅记录自己感兴趣的内... @TOC 前言Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ 自我介绍 ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研。学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 知其然 知其所以然! 本文仅记录自己感兴趣的内...
- Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略 Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略
- 之前学了一个深度学习应用开发,学了一段时间,后来就没学了。确实是"靡不有初,鲜克有终",现在不愿意再继续之前的学。我又找了一本书从头开始,这本书的名字是<深度学习入门与TensorFlow实践>。数(scalar)是一个数字。简直是废话。不过这才刚开始嘛。多个数字有序的放在一起,可以构成向量。比如下图的x:你看左边的是行向量,右边的是列向量。多个数字以二维的形式表示的,可以构成矩阵。比如X:... 之前学了一个深度学习应用开发,学了一段时间,后来就没学了。确实是"靡不有初,鲜克有终",现在不愿意再继续之前的学。我又找了一本书从头开始,这本书的名字是<深度学习入门与TensorFlow实践>。数(scalar)是一个数字。简直是废话。不过这才刚开始嘛。多个数字有序的放在一起,可以构成向量。比如下图的x:你看左边的是行向量,右边的是列向量。多个数字以二维的形式表示的,可以构成矩阵。比如X:...
- 本文介绍了Jetson AGX Orin如何升级到Jetpack 5.0.2版本。 本文介绍了Jetson AGX Orin如何升级到Jetpack 5.0.2版本。
- 大家好,我是小寒。今天我们来分享第二个深度学习案例:手写数字识别。MNIST 手写数字识别数据集来自美国国家标准与技术研究所(National Institute of Standards and Technology,NIST)。这个数据集由250个不同人手写的数字构成, 其中50%来自高中生, 50%来自美国人口普查局(the Census Bureau) 的工作人员。MNIST 是图像... 大家好,我是小寒。今天我们来分享第二个深度学习案例:手写数字识别。MNIST 手写数字识别数据集来自美国国家标准与技术研究所(National Institute of Standards and Technology,NIST)。这个数据集由250个不同人手写的数字构成, 其中50%来自高中生, 50%来自美国人口普查局(the Census Bureau) 的工作人员。MNIST 是图像...
- 原文链接大家好,我是小寒。今天来分享一个真实的 Kaggle ⽐赛案例:预测房价。此数据集由 Bart DeCock 于 2011 年收集,涵盖了2006-2010 年期间亚利桑那州埃姆斯市的房价。 读取数据集数据分为训练集和测试集。每条记录包括了房屋的属性,如街道类型、施⼯年份、屋顶类型、地下室状况等。这些特征由各种数据类型组成。我们使⽤ pandas 分别加载包含训练数据和测试数据的两个... 原文链接大家好,我是小寒。今天来分享一个真实的 Kaggle ⽐赛案例:预测房价。此数据集由 Bart DeCock 于 2011 年收集,涵盖了2006-2010 年期间亚利桑那州埃姆斯市的房价。 读取数据集数据分为训练集和测试集。每条记录包括了房屋的属性,如街道类型、施⼯年份、屋顶类型、地下室状况等。这些特征由各种数据类型组成。我们使⽤ pandas 分别加载包含训练数据和测试数据的两个...
- 👋👋欢迎来到👋👋🎩魔术之家!!🎩该文章收录专栏✨— 机器学习 —✨专栏内容✨— 【机器学习】浅谈正规方程法&梯度下降 —✨✨— 机器学习】梯度下降之数据标准化 —✨✨— 第十届“泰迪杯“感谢学习总结—✨@toc正规方程法(最小二乘)与梯度下降法都是为了求解线性回归的最优参数,但是不同的是正规方程法只需要一步就可以得到代价函数最优点,而梯度下降则是迭代下降,看起来似乎正规方程法要好... 👋👋欢迎来到👋👋🎩魔术之家!!🎩该文章收录专栏✨— 机器学习 —✨专栏内容✨— 【机器学习】浅谈正规方程法&梯度下降 —✨✨— 机器学习】梯度下降之数据标准化 —✨✨— 第十届“泰迪杯“感谢学习总结—✨@toc正规方程法(最小二乘)与梯度下降法都是为了求解线性回归的最优参数,但是不同的是正规方程法只需要一步就可以得到代价函数最优点,而梯度下降则是迭代下降,看起来似乎正规方程法要好...
- 在这篇文章中,我们将学习在视频或帧序列中计算光流的各种算法。我们将讨论稀疏和密集光流算法的相关理论和在OpenCV中的实现。1.什么是光流?光流是一个视频中两个连续帧之间的逐像素运动估计任务。基本上,光流任务意味着计算像素的移动向量作为物体在两个相邻图像之间的位移差。光流的主要思想是估计物体运动或摄像机运动引起的物体的位移矢量。2.理论基础让我们假设我们有一个灰度图像。我们定义函数 I ( ... 在这篇文章中,我们将学习在视频或帧序列中计算光流的各种算法。我们将讨论稀疏和密集光流算法的相关理论和在OpenCV中的实现。1.什么是光流?光流是一个视频中两个连续帧之间的逐像素运动估计任务。基本上,光流任务意味着计算像素的移动向量作为物体在两个相邻图像之间的位移差。光流的主要思想是估计物体运动或摄像机运动引起的物体的位移矢量。2.理论基础让我们假设我们有一个灰度图像。我们定义函数 I ( ...
- 完整源码GitHub使用高斯混合模型(BackgroundSubtractorMOG2)对背景建模,提取出前景使用中值滤波去掉椒盐噪声,再闭运算和开运算填充空洞使用cvBlob库追踪车辆,我稍微修改了cvBlob源码来通过编译由于要对背景建模,这个方法要求背景是静止的另外不同车辆白色区域不能连通,否则会认为是同一物体[cpp] view plain copyvoid processVid... 完整源码GitHub使用高斯混合模型(BackgroundSubtractorMOG2)对背景建模,提取出前景使用中值滤波去掉椒盐噪声,再闭运算和开运算填充空洞使用cvBlob库追踪车辆,我稍微修改了cvBlob源码来通过编译由于要对背景建模,这个方法要求背景是静止的另外不同车辆白色区域不能连通,否则会认为是同一物体[cpp] view plain copyvoid processVid...
- 图像处理 图像处理
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签