- 本文深入探讨了深度残差网络(ResNet)的核心概念和架构组成。我们从深度学习和梯度消失问题入手,逐一解析了残差块、初始卷积层、残差块组、全局平均池化和全连接层的作用和优点。文章还包含使用PyTorch构建和训练ResNet模型的实战部分,带有详细的代码和解释。 本文深入探讨了深度残差网络(ResNet)的核心概念和架构组成。我们从深度学习和梯度消失问题入手,逐一解析了残差块、初始卷积层、残差块组、全局平均池化和全连接层的作用和优点。文章还包含使用PyTorch构建和训练ResNet模型的实战部分,带有详细的代码和解释。
- 本文深入探讨了自编码器(AE)的核心概念、类型、应用场景及实战演示。通过理论分析和实践结合,我们详细解释了自动编码器的工作原理和数学基础,并通过具体代码示例展示了从模型构建、训练到多平台推理部署的全过程。 本文深入探讨了自编码器(AE)的核心概念、类型、应用场景及实战演示。通过理论分析和实践结合,我们详细解释了自动编码器的工作原理和数学基础,并通过具体代码示例展示了从模型构建、训练到多平台推理部署的全过程。
- 本文全面探讨了卷积神经网络CNN,深入分析了背景和重要性、定义与层次介绍、训练与优化,详细分析了其卷积层、激活函数、池化层、归一化层,最后列出其训练与优化的多项关键技术:训练集准备与增强、损失函数、优化器、学习率调整、正则化技巧与模型评估调优。旨在为人工智能学者使用卷积神经网络CNN提供全面的指导。 本文全面探讨了卷积神经网络CNN,深入分析了背景和重要性、定义与层次介绍、训练与优化,详细分析了其卷积层、激活函数、池化层、归一化层,最后列出其训练与优化的多项关键技术:训练集准备与增强、损失函数、优化器、学习率调整、正则化技巧与模型评估调优。旨在为人工智能学者使用卷积神经网络CNN提供全面的指导。
- 本文全面探讨了Transformer及其衍生模型,深入分析了自注意力机制、编码器和解码器结构,并列举了其编码实现加深理解,最后列出基于Transformer的各类模型如BERT、GPT等。文章旨在深入解释Transformer的工作原理,并展示其在人工智能领域的广泛影响。 本文全面探讨了Transformer及其衍生模型,深入分析了自注意力机制、编码器和解码器结构,并列举了其编码实现加深理解,最后列出基于Transformer的各类模型如BERT、GPT等。文章旨在深入解释Transformer的工作原理,并展示其在人工智能领域的广泛影响。
- 自然语言处理(NLP)涵盖了从基础理论到实际应用的广泛领域,本文深入探讨了NLP的关键概念,包括词向量、文本预处理、自然语言理解与生成、统计与规则驱动方法等,为读者提供了全面而深入的视角。 自然语言处理(NLP)涵盖了从基础理论到实际应用的广泛领域,本文深入探讨了NLP的关键概念,包括词向量、文本预处理、自然语言理解与生成、统计与规则驱动方法等,为读者提供了全面而深入的视角。
- 全套解决方案:基于pytorch、transformers的中文NLP训练框架,支持大模型训练和文本生成,快速上手,海量训练数据! 全套解决方案:基于pytorch、transformers的中文NLP训练框架,支持大模型训练和文本生成,快速上手,海量训练数据!
- 解决如何将GPU VNT1裸金属服务器纳管至已创建好的华为云CCE集群, 并且在集群安装gpu-device-plugin插件, 根据pytorch2.01镜像创建pod,验证cuda是否可用。 本文给出端到端详解的步骤, 助力读者快速部署业务。 解决如何将GPU VNT1裸金属服务器纳管至已创建好的华为云CCE集群, 并且在集群安装gpu-device-plugin插件, 根据pytorch2.01镜像创建pod,验证cuda是否可用。 本文给出端到端详解的步骤, 助力读者快速部署业务。
- 实践是检验理论的唯一标准。为此,我们将通过中国计算机学会举办的2019 CCF大数据与计算智能大赛的互联网金融新实体发现竞赛作为实践,让大家了解预训练模型的强大。 实践是检验理论的唯一标准。为此,我们将通过中国计算机学会举办的2019 CCF大数据与计算智能大赛的互联网金融新实体发现竞赛作为实践,让大家了解预训练模型的强大。
- 通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。 通过员工工作年限与工资的对应关系表,找出二者之间的关系,并预测在指定的年限时,工资会有多少。
- 概述介绍PyTorch 2.0,我们迈向PyTorch下一代2系列发行版的第一步。在过去的几年里,我们进行了创新和迭代,从PyTorch 1.0到最近的1.13,并转移到新成立的PyTorch基金会,它是Linux基金会的一部分。除了我们令人惊叹的社区之外,PyTorch最大的优势是我们继续作为一流的Python集成、命令式风格、API和选项的简单性。PyTorch 2.0提供了相同的急切... 概述介绍PyTorch 2.0,我们迈向PyTorch下一代2系列发行版的第一步。在过去的几年里,我们进行了创新和迭代,从PyTorch 1.0到最近的1.13,并转移到新成立的PyTorch基金会,它是Linux基金会的一部分。除了我们令人惊叹的社区之外,PyTorch最大的优势是我们继续作为一流的Python集成、命令式风格、API和选项的简单性。PyTorch 2.0提供了相同的急切...
- 训练场景下,迁移原始网络 (如TensorFlow、PyTorch) ,用于NPU上执行训练,网络迁移可能会造成自有实现的算子运算结果与用原生标准算子运算结果存在偏差。 训练场景下,迁移原始网络 (如TensorFlow、PyTorch) ,用于NPU上执行训练,网络迁移可能会造成自有实现的算子运算结果与用原生标准算子运算结果存在偏差。
- PyTorch的主要组成模块和实战 1.PyTorch主要模块pytorch和paddlepaddle很相似,所以上手较快。 1.1 环境设置和超参设置超参看一看先:batch size初始学习率(初始)训练次数(max_epochs)GPU配置import osimport numpy as npimport torchimport torch.nn as nnfrom torch.ut... PyTorch的主要组成模块和实战 1.PyTorch主要模块pytorch和paddlepaddle很相似,所以上手较快。 1.1 环境设置和超参设置超参看一看先:batch size初始学习率(初始)训练次数(max_epochs)GPU配置import osimport numpy as npimport torchimport torch.nn as nnfrom torch.ut...
- @TOC 模型简介SimCSE模型主要分为两大块,一个是无监督的部分,一个是有监督的部分。整体结构如下图所示:论文地址: https://arxiv.org/pdf/2104.08821.pdf Unsupervised SimCSE 数据对于无监督的部分, 最巧妙的是采用Dropout做数据增强, 来构建正例, 从而构建一个正样本对, 而负样本对则是在同一个batch中的其他句子.那么有人... @TOC 模型简介SimCSE模型主要分为两大块,一个是无监督的部分,一个是有监督的部分。整体结构如下图所示:论文地址: https://arxiv.org/pdf/2104.08821.pdf Unsupervised SimCSE 数据对于无监督的部分, 最巧妙的是采用Dropout做数据增强, 来构建正例, 从而构建一个正样本对, 而负样本对则是在同一个batch中的其他句子.那么有人...
- Pytorch 基于LeNet的手写数字识别 Pytorch 基于LeNet的手写数字识别
- @TOC 简介Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 本文仅记录自己感兴趣的内容 论文简介原文链接:It’s Wh... @TOC 简介Hello!非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语! 唯有努力💪 本文仅记录自己感兴趣的内容 论文简介原文链接:It’s Wh...
上滑加载中
推荐直播
-
Ascend C算子编程之旅:基础入门篇
2024/11/22 周五 16:00-17:30
莫老师 昇腾CANN专家
介绍Ascend C算子基本概念、异构计算架构CANN和Ascend C基本概述,以及Ascend C快速入门,夯实Ascend C算子编程基础
回顾中 -
深入解析:华为全栈AI解决方案与云智能开放能力
2024/11/22 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播我们将重点为大家介绍华为全栈全场景AI解决方案以和华为云企业智能AI开放能力。旨在帮助开发者深入理解华为AI解决方案,并能够更加熟练地运用这些技术。通过洞悉华为解决方案,了解人工智能完整生态链条的构造。
回顾中 -
华为云DataArts+DWS助力企业数据治理一站式解决方案及应用实践
2024/11/27 周三 16:30-18:00
Walter.chi 华为云数据治理DTSE技术布道师
想知道数据治理项目中,数据主题域如何合理划分?数据标准及主数据标准如何制定?数仓分层模型如何合理规划?华为云DataArts+DWS助力企业数据治理项目一站式解决方案和应用实践告诉您答案!本期将从数据趋势、数据治理方案、数据治理规划及落地,案例分享四个方面来助力企业数据治理项目合理咨询规划及顺利实施。
去报名
热门标签