- Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,兼具开发效率和运行性能。使用Ascend C,开发者可以基于昇腾AI硬件,高效的实现自定义的创新算法。 Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,兼具开发效率和运行性能。使用Ascend C,开发者可以基于昇腾AI硬件,高效的实现自定义的创新算法。
- 简单几步,带你使用AI Gallery,基于ChatGLMV2构建电商领域的专属问答助手。 简单几步,带你使用AI Gallery,基于ChatGLMV2构建电商领域的专属问答助手。
- 作为开发者生态系列活动,400余名开发者与华为云、鲲鹏、昇腾、鸿蒙等领域技术专家齐聚一堂,共话华为根生态技术能力与前沿洞察。 作为开发者生态系列活动,400余名开发者与华为云、鲲鹏、昇腾、鸿蒙等领域技术专家齐聚一堂,共话华为根生态技术能力与前沿洞察。
- 目前已经有越来越多的开发者使用Ascend C,我们将通过几期“Ascend C算子性能优化”专题分享,围绕开发者最为关心的算子性能优化环节,介绍Ascend C算子常用的优化技巧,帮助开发者自主构建出更优性能的算子。专题内容将围绕流水优化、搬运优化、内存优化、API使用优化以及Tiling优化等优化技巧,从方案讲解、优化案例、性能对比等多角度展开介绍。 目前已经有越来越多的开发者使用Ascend C,我们将通过几期“Ascend C算子性能优化”专题分享,围绕开发者最为关心的算子性能优化环节,介绍Ascend C算子常用的优化技巧,帮助开发者自主构建出更优性能的算子。专题内容将围绕流水优化、搬运优化、内存优化、API使用优化以及Tiling优化等优化技巧,从方案讲解、优化案例、性能对比等多角度展开介绍。
- KubeEdge 1.18.0 版本发布,可靠性和安全性带来提升;如何使用昇思MindSpore框架构建基于MNIST数据集的手写数字识别模型;自然语言处理国际顶会ACL 2024公布投稿录用结果,华为云技术创新部—AI系统创新Lab的论文《Uni-Dubbing: Zero-Shot Speech Synthesis from Visual Articulation》被接受录用... KubeEdge 1.18.0 版本发布,可靠性和安全性带来提升;如何使用昇思MindSpore框架构建基于MNIST数据集的手写数字识别模型;自然语言处理国际顶会ACL 2024公布投稿录用结果,华为云技术创新部—AI系统创新Lab的论文《Uni-Dubbing: Zero-Shot Speech Synthesis from Visual Articulation》被接受录用...
- 为加速大模型算力释放,昇腾提供AOL(Ascend Operator Library)算子加速库,不仅覆盖Softmax、MatMul等基础算子,也包括了大模型结构泛化的Flash Attention等高性能融合算子,开发者可以直接使用昇腾内置的算子加速库使能大模型创新与应用。 为加速大模型算力释放,昇腾提供AOL(Ascend Operator Library)算子加速库,不仅覆盖Softmax、MatMul等基础算子,也包括了大模型结构泛化的Flash Attention等高性能融合算子,开发者可以直接使用昇腾内置的算子加速库使能大模型创新与应用。
- GE(Graph Engine)将模型的调度分为Host调度与下沉调度两种模式。经过上期的介绍我们知道,在模型为静态shape时,由于其输入tensor shape固定不变,在编译时就能确定所有算子的输入输出shape,并能提前完成模型级内存编排、tiling计算等Host调度工作,因此采用模型下沉调度方式可以将整个模型下沉到Device侧执行,从而提升模型调度性能。 GE(Graph Engine)将模型的调度分为Host调度与下沉调度两种模式。经过上期的介绍我们知道,在模型为静态shape时,由于其输入tensor shape固定不变,在编译时就能确定所有算子的输入输出shape,并能提前完成模型级内存编排、tiling计算等Host调度工作,因此采用模型下沉调度方式可以将整个模型下沉到Device侧执行,从而提升模型调度性能。
- 如何减少Host Bound模型的Device空闲时间,从而优化模型执行性能显得尤其重要,GE(Graph Engine)图引擎通过图模式的Host调度和模型下沉调度的方式,可提升模型调度性能,缩短模型E2E执行时间。 如何减少Host Bound模型的Device空闲时间,从而优化模型执行性能显得尤其重要,GE(Graph Engine)图引擎通过图模式的Host调度和模型下沉调度的方式,可提升模型调度性能,缩短模型E2E执行时间。
- 随着人工智能应用日益成熟,文本、图片、音频、视频等非结构化数据的处理需求呈指数级增长,数据处理过程从通用计算逐步向异构计算过渡。面对多样化的计算需求,昇腾AI处理器内置丰富的硬件计算资源用于处理不同的计算任务。其中,AI Core、Vector Core与AI CPU分别负责AI计算场景下的矩阵、向量与标量计算,DVPP支持图像、视频等数据的加速处理,而HCCL作为华为集合通信库,则提供单机多卡及 随着人工智能应用日益成熟,文本、图片、音频、视频等非结构化数据的处理需求呈指数级增长,数据处理过程从通用计算逐步向异构计算过渡。面对多样化的计算需求,昇腾AI处理器内置丰富的硬件计算资源用于处理不同的计算任务。其中,AI Core、Vector Core与AI CPU分别负责AI计算场景下的矩阵、向量与标量计算,DVPP支持图像、视频等数据的加速处理,而HCCL作为华为集合通信库,则提供单机多卡及
- 随着大模型时代的到来,AI算法的能力上限不断被刷新,算力门槛也在持续飙升,如何在有限的计算资源的条件下优化和训练模型显得尤其重要。面向计算图编译和运行优化场景,昇腾AI异构计算架构CANN(Compute Architecture for Neural Networks)开放GE(Graph Engine)图引擎,通过计算图优化、计算图下沉、内存复用和多流水并行等技术可将计算图执行性能提升20%, 随着大模型时代的到来,AI算法的能力上限不断被刷新,算力门槛也在持续飙升,如何在有限的计算资源的条件下优化和训练模型显得尤其重要。面向计算图编译和运行优化场景,昇腾AI异构计算架构CANN(Compute Architecture for Neural Networks)开放GE(Graph Engine)图引擎,通过计算图优化、计算图下沉、内存复用和多流水并行等技术可将计算图执行性能提升20%,
- Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,最大化匹配用户开发习惯;通过多层接口抽象、自动并行计算、孪生调试等关键技术,极大提高算子开发效率,助力AI开发者低成本完成算子开发和模型调优部署。全新升级的Ascend C 2.0版本将进一步贴近用户大模型场景的开发诉求,带来更易用的开发体验和更强大的算子执行性能。 Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,最大化匹配用户开发习惯;通过多层接口抽象、自动并行计算、孪生调试等关键技术,极大提高算子开发效率,助力AI开发者低成本完成算子开发和模型调优部署。全新升级的Ascend C 2.0版本将进一步贴近用户大模型场景的开发诉求,带来更易用的开发体验和更强大的算子执行性能。
- LLM的Attention部分处理给计算系统带来巨大的计算和访存压力。业界先后出现FlashAttention、FlashAttention2等算法,通过计算等价和切分有效降低片上内存数据访问量。 LLM的Attention部分处理给计算系统带来巨大的计算和访存压力。业界先后出现FlashAttention、FlashAttention2等算法,通过计算等价和切分有效降低片上内存数据访问量。
- Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,兼具开发效率和运行性能。基于Ascend C编写的算子程序,通过编译器编译和运行时调度,运行在昇腾AI处理器上。使用Ascend C,开发者可以基于昇腾AI硬件高效实现自定义的创新算法。 Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,兼具开发效率和运行性能。基于Ascend C编写的算子程序,通过编译器编译和运行时调度,运行在昇腾AI处理器上。使用Ascend C,开发者可以基于昇腾AI硬件高效实现自定义的创新算法。
- 昇腾AI硬件内置专门用于图像预处理的硬件单元,开发者通过其上层软件栈CANN能够更加便捷地发挥出硬件强大的媒体处理硬加速能力。香橙派AIpro开发板是香橙派联合昇腾打造的高性能AI开发板,开发者可以基于此,对不满足神经网络模型输入要求的数据进行预处理,从而更好地完成AI推理计算。 昇腾AI硬件内置专门用于图像预处理的硬件单元,开发者通过其上层软件栈CANN能够更加便捷地发挥出硬件强大的媒体处理硬加速能力。香橙派AIpro开发板是香橙派联合昇腾打造的高性能AI开发板,开发者可以基于此,对不满足神经网络模型输入要求的数据进行预处理,从而更好地完成AI推理计算。
- 模型转换的过程要用到 ATC 工具,目前 ATC 工具直接支持从 Caffe、ONNX、TensorFlow 以及 MindSpore模型的转换,所以如果你的训练框架是 PyTorch,则需要做 torch.onnx.export 操作导出成ONNX模型后才能使用ATC工具。 模型转换的过程要用到 ATC 工具,目前 ATC 工具直接支持从 Caffe、ONNX、TensorFlow 以及 MindSpore模型的转换,所以如果你的训练框架是 PyTorch,则需要做 torch.onnx.export 操作导出成ONNX模型后才能使用ATC工具。
上滑加载中