- 开发者
- 深度学习
#深度学习#
- 理解神经网络的基本组成部分,如张量、张量运算和梯度递减等,对构造复杂的神经网络至关重要。本章将构建首个神经网络的Hello world程序,并涵盖以下主题:安装PyTorch;实现第一个神经网络;划分神经网络的功能模块;介绍张量、变量、Autograd、梯度和优化器等基本构造模块;使用PyTorch加载数据。2.1 安装PyTorchPyTorch可以作为Python包使用,用户可以使用pi... 理解神经网络的基本组成部分,如张量、张量运算和梯度递减等,对构造复杂的神经网络至关重要。本章将构建首个神经网络的Hello world程序,并涵盖以下主题:安装PyTorch;实现第一个神经网络;划分神经网络的功能模块;介绍张量、变量、Autograd、梯度和优化器等基本构造模块;使用PyTorch加载数据。2.1 安装PyTorchPyTorch可以作为Python包使用,用户可以使用pi...
- 大家好!今天我想谈谈 PyTorch 的内部机制。这份演讲是为用过 PyTorch并且有心为 PyTorch 做贡献但却被 PyTorch 那庞大的 C++ 代码库劝退的人提供的。没必要说谎:PyTorch 代码库有时候确实让人难以招架。本演讲的目的是为你提供一份导航图:为你讲解一个「支持自动微分的张量库」的基本概念结构,并为你提供一些能帮你在代码库中寻路的工具和技巧。我预设你之前已经写过一... 大家好!今天我想谈谈 PyTorch 的内部机制。这份演讲是为用过 PyTorch并且有心为 PyTorch 做贡献但却被 PyTorch 那庞大的 C++ 代码库劝退的人提供的。没必要说谎:PyTorch 代码库有时候确实让人难以招架。本演讲的目的是为你提供一份导航图:为你讲解一个「支持自动微分的张量库」的基本概念结构,并为你提供一些能帮你在代码库中寻路的工具和技巧。我预设你之前已经写过一...
- 近些年,人工智能的热度都维持在一定的高度。从Google AlphaGo到Chatbot聊天机器人、智能理专、精准医疗、机器翻译等,人工智能技术被应用于安防、医疗、家居、交通、智慧城市等各行各业,其前景是毋庸置疑的,未来绝对是一个万亿级市场。 近些年,人工智能的热度都维持在一定的高度。从Google AlphaGo到Chatbot聊天机器人、智能理专、精准医疗、机器翻译等,人工智能技术被应用于安防、医疗、家居、交通、智慧城市等各行各业,其前景是毋庸置疑的,未来绝对是一个万亿级市场。
- 随着大数据和AI业务的不断融合,大数据分析和处理过程中,通过深度学习技术多非结构化数据(如图片、音频、文本)的进行大数据处理的业务场景越来越多。本文会介绍Spark如何与深度学习框架进行协同工作,在大数据的处理过程利用深度学习框架对非结构化数据进行处理。 随着大数据和AI业务的不断融合,大数据分析和处理过程中,通过深度学习技术多非结构化数据(如图片、音频、文本)的进行大数据处理的业务场景越来越多。本文会介绍Spark如何与深度学习框架进行协同工作,在大数据的处理过程利用深度学习框架对非结构化数据进行处理。
- 本文介绍了针对序列特征采用的处理方法之二:基于卷积神经网络方法,并分析了为何卷积神经网络擅长对于局部特征的提取。 本文介绍了针对序列特征采用的处理方法之二:基于卷积神经网络方法,并分析了为何卷积神经网络擅长对于局部特征的提取。
- 本文为OCR文字识别系列的第二篇。首先简单的介绍一下华为云文字识别服务,随后重点介绍产品的关键技术、关键能力,产品的优化之路,做产品需要注意到问题以及踩过的坑。其中很多点是整个人工智能或者以数据为驱动的产品都需要注意的。 本文为OCR文字识别系列的第二篇。首先简单的介绍一下华为云文字识别服务,随后重点介绍产品的关键技术、关键能力,产品的优化之路,做产品需要注意到问题以及踩过的坑。其中很多点是整个人工智能或者以数据为驱动的产品都需要注意的。
- 集成学习不是一种具体的算法,而是在机器学习中为了提升预测精度而采取的一种或多种策略。其原理是通过构建多个弱监督模型并使用一定策略得到一个更好更全面的强监督模型。 集成学习不是一种具体的算法,而是在机器学习中为了提升预测精度而采取的一种或多种策略。其原理是通过构建多个弱监督模型并使用一定策略得到一个更好更全面的强监督模型。
- 人工智能,深度学习,机器学习……不管你在从事什么工作,都需要了解这些概念。否则的话,三年之内你就会变成一只恐龙。 —— 马克·库班 人工智能,深度学习,机器学习……不管你在从事什么工作,都需要了解这些概念。否则的话,三年之内你就会变成一只恐龙。 —— 马克·库班
- 《1 天搞懂深度学习》,300 多页的 ppt,台湾李宏毅教授写的,非常棒。不夸张地说,是我看过最系统,也最通俗易懂的,关于深度学习的文章。 《1 天搞懂深度学习》,300 多页的 ppt,台湾李宏毅教授写的,非常棒。不夸张地说,是我看过最系统,也最通俗易懂的,关于深度学习的文章。
- 这期视频给大家从各个方面推荐一下学习AI的资源,从书籍,课程,代码,实践等,华为的昇腾为AI开发者提供了一站式服务,希望能帮助大家在AI的道路上不走弯路,快速上手实践操作,我的b站账号:白手起家的百万富翁,全网通用账号,请大家关注我 这期视频给大家从各个方面推荐一下学习AI的资源,从书籍,课程,代码,实践等,华为的昇腾为AI开发者提供了一站式服务,希望能帮助大家在AI的道路上不走弯路,快速上手实践操作,我的b站账号:白手起家的百万富翁,全网通用账号,请大家关注我
- 本文主要通过两个实际应用案例:一是基于本地 Jupyter Notebook 的 MNIST 手写数据识别;二是基于华为云服务器的 CIFAR-10 图像分类,对开源框架 MindSpore 进行介绍。 本文主要通过两个实际应用案例:一是基于本地 Jupyter Notebook 的 MNIST 手写数据识别;二是基于华为云服务器的 CIFAR-10 图像分类,对开源框架 MindSpore 进行介绍。
- 详解GIoU的细节和动机 详解GIoU的细节和动机
- 本文通过三篇发表在CVPR 2019上的论文,对增量学习任务进行简单的介绍和总结。在此基础上,以个人的思考为基础,对这一研究领域的未来趋势进行预测。 本文通过三篇发表在CVPR 2019上的论文,对增量学习任务进行简单的介绍和总结。在此基础上,以个人的思考为基础,对这一研究领域的未来趋势进行预测。
- 本文介绍了针对序列特征采用的处理方法之一:基于注意力机制方法,并总结了一下相似性度量的方法。 本文介绍了针对序列特征采用的处理方法之一:基于注意力机制方法,并总结了一下相似性度量的方法。
- 本文介绍了一种比较新颖的稠密特征加入CTR预估模型的方法并用图示的方法演示了基本稠密特征加入神经网络中过程。 本文介绍了一种比较新颖的稠密特征加入CTR预估模型的方法并用图示的方法演示了基本稠密特征加入神经网络中过程。
上滑加载中
推荐直播
-
物联网资深专家带你轻松构建AIoT智能场景应用
2024/11/21 周四 16:30-18:00
管老师 华为云IoT DTSE技术布道师
如何轻松构建AIoT智能场景应用?本期直播将聚焦华为云设备接入平台,结合AI、鸿蒙(OpenHarmony)、大数据等技术,实现物联网端云协同创新场景,教您如何打造更有实用性及创新性的AIoT行业标杆应用。
回顾中 -
Ascend C算子编程之旅:基础入门篇
2024/11/22 周五 16:00-17:30
莫老师 昇腾CANN专家
介绍Ascend C算子基本概念、异构计算架构CANN和Ascend C基本概述,以及Ascend C快速入门,夯实Ascend C算子编程基础
即将直播 -
深入解析:华为全栈AI解决方案与云智能开放能力
2024/11/22 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播我们将重点为大家介绍华为全栈全场景AI解决方案以和华为云企业智能AI开放能力。旨在帮助开发者深入理解华为AI解决方案,并能够更加熟练地运用这些技术。通过洞悉华为解决方案,了解人工智能完整生态链条的构造。
去报名
热门标签