- 开发者
- 深度学习
#深度学习#
- 随着硬件设备的发展,越来越多的底层芯片开始具备运行深度学习模型的能力。本文详细介绍了在海思的3516ev200芯片上使用腾讯的ncnn框架编译和运行模型的流程,希望对你有所帮助,同时也希望能探讨端侧算法更多的可能性。 随着硬件设备的发展,越来越多的底层芯片开始具备运行深度学习模型的能力。本文详细介绍了在海思的3516ev200芯片上使用腾讯的ncnn框架编译和运行模型的流程,希望对你有所帮助,同时也希望能探讨端侧算法更多的可能性。
- 机器学习中往往会遇到样本特征非常多的情况,往往成千过万,这对于机器学习是非常不利的,被称为维数灾难。降维的主要方法有多维缩放(MDS)、主成分分析(PCA)、线性判别分析(LDA)。 机器学习中往往会遇到样本特征非常多的情况,往往成千过万,这对于机器学习是非常不利的,被称为维数灾难。降维的主要方法有多维缩放(MDS)、主成分分析(PCA)、线性判别分析(LDA)。
- KNN是一种常见的监督学习算法,工作机制很好理解:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息来进行预测。总结一句话就是“近朱者赤,近墨者黑”。 KNN是一种常见的监督学习算法,工作机制很好理解:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息来进行预测。总结一句话就是“近朱者赤,近墨者黑”。
- 神经网络也是机器学习的一种方法,是深度学习的基础。这是一种模拟生物神经系统实现人工智能的一种技术。要学习神经网络,就要从最经典的“M-P神经元模型”开始,这是神经网络乃至深度学习的基础,也是这个算法为什么被称为“神经网络”的原因。 神经网络也是机器学习的一种方法,是深度学习的基础。这是一种模拟生物神经系统实现人工智能的一种技术。要学习神经网络,就要从最经典的“M-P神经元模型”开始,这是神经网络乃至深度学习的基础,也是这个算法为什么被称为“神经网络”的原因。
- 以机器学习和数据挖掘为核心的 AI 技术逐渐深入融合到金融、教育、医疗等全行业场景中,让传统的行业焕发出了新的活力,AI + 正在成为新的热潮。算法是人工智能的根基,是在幕后推动人工智能最终实现的“核心引擎”, 目前人工智能主要以算法来引领,通过大数据、大算力来实现,深度学习算法的突破引爆了大量的落地应用,如人脸识别、信息搜索、语音理解、无人系统、医学影像等。需要注意地是,人工智能技术在应用端如火 以机器学习和数据挖掘为核心的 AI 技术逐渐深入融合到金融、教育、医疗等全行业场景中,让传统的行业焕发出了新的活力,AI + 正在成为新的热潮。算法是人工智能的根基,是在幕后推动人工智能最终实现的“核心引擎”, 目前人工智能主要以算法来引领,通过大数据、大算力来实现,深度学习算法的突破引爆了大量的落地应用,如人脸识别、信息搜索、语音理解、无人系统、医学影像等。需要注意地是,人工智能技术在应用端如火
- 贝叶斯算法是一个典型的统计概率学算法,里面涉及到较多的统计学概念,贝叶斯分类器和贝叶斯网络也是以这个算法作为理论基础。先来看看几个绕不过去的统计学概念: 贝叶斯算法是一个典型的统计概率学算法,里面涉及到较多的统计学概念,贝叶斯分类器和贝叶斯网络也是以这个算法作为理论基础。先来看看几个绕不过去的统计学概念:
- 支持向量机(SVM)可以说是一个完全由数学理论和公式进行应用的一种机器学习算法,在小批量数据分类上准确度高、性能好,在二分类问题上有广泛的应用。同样是二分类算法,支持向量机和逻辑回归有很多相似性,都是二分类问题的判决模型,主要的差异在于损失函数的不同,支持向量机相比于逻辑回归,更倾向于找到样本空间中最优的划分超平面。 支持向量机(SVM)可以说是一个完全由数学理论和公式进行应用的一种机器学习算法,在小批量数据分类上准确度高、性能好,在二分类问题上有广泛的应用。同样是二分类算法,支持向量机和逻辑回归有很多相似性,都是二分类问题的判决模型,主要的差异在于损失函数的不同,支持向量机相比于逻辑回归,更倾向于找到样本空间中最优的划分超平面。
- 机器学习研究不是关于 AI 应该具备哪些知识的研究,而是提出优秀的学习算法的研究。 机器学习研究不是关于 AI 应该具备哪些知识的研究,而是提出优秀的学习算法的研究。
- 决策树是一种非常常见的机器学习算法,采用的是自顶向下的递归方法,利用信息熵为基本度量构造一颗熵值下降最快的树,理想情况下到叶子节点的熵值为零,对应每个叶子节点的实例都属于同一类。叶子节点对应于决策结果,节点则对应一个属性测试。相比于线性模型,树形模型更接近于人的思维方式,可以产生可视化的分类规则,产生的模型具有比较强的可解释性。 本文作者周捷 决策树是一种非常常见的机器学习算法,采用的是自顶向下的递归方法,利用信息熵为基本度量构造一颗熵值下降最快的树,理想情况下到叶子节点的熵值为零,对应每个叶子节点的实例都属于同一类。叶子节点对应于决策结果,节点则对应一个属性测试。相比于线性模型,树形模型更接近于人的思维方式,可以产生可视化的分类规则,产生的模型具有比较强的可解释性。 本文作者周捷
- 一般情况下,我们都认为逻辑回归(LR)用来解决二分类问题,模型输出是y=1的概率值。那逻辑回归能否用来做多分类任务呢,答案是肯定的。这里有两种方法使得逻辑回归能进行多分类任务: 一、将多分类任务拆解成多个二分类任务,利用逻辑回归分类器进行投票求解;二、对传统的逻辑回归模型进行改造,使之变为softmax回归模型进行多分类任务求解。 本文作者周捷。 一般情况下,我们都认为逻辑回归(LR)用来解决二分类问题,模型输出是y=1的概率值。那逻辑回归能否用来做多分类任务呢,答案是肯定的。这里有两种方法使得逻辑回归能进行多分类任务: 一、将多分类任务拆解成多个二分类任务,利用逻辑回归分类器进行投票求解;二、对传统的逻辑回归模型进行改造,使之变为softmax回归模型进行多分类任务求解。 本文作者周捷。
- 逻辑回归基本概念:前面提到过线性模型也可以用来做分类任务,但线性模型的预测输出 y = wx + b 可能是(-∞,+∞)范围内的任意实数,而二分类任务的输出y={0,1},如何在这之间做转换呢? 逻辑回归基本概念:前面提到过线性模型也可以用来做分类任务,但线性模型的预测输出 y = wx + b 可能是(-∞,+∞)范围内的任意实数,而二分类任务的输出y={0,1},如何在这之间做转换呢?
- 9月18日-20日,一年一度的华为全联接大会(HUAWEI CONNECT 2019)将在上海世博中心世博展览馆隆重开幕。本次华为全联接大会以“共创智能新高度”为主题,将发布云和AI的最新产品与解决方案,分享如何应用云和AI的技术,推进数字化转型的最新实践。此次大会上,ModelArts图深度学习也将作为重头戏为大家展示。 9月18日-20日,一年一度的华为全联接大会(HUAWEI CONNECT 2019)将在上海世博中心世博展览馆隆重开幕。本次华为全联接大会以“共创智能新高度”为主题,将发布云和AI的最新产品与解决方案,分享如何应用云和AI的技术,推进数字化转型的最新实践。此次大会上,ModelArts图深度学习也将作为重头戏为大家展示。
- 本人本身是从事工业领域的机器视觉行业的,做过不少的机器视觉方案,记得14,15年以前,都是用得比如halcon,MIL,OPENCV,对于图像的分类,分割,定位等等,传统方法已经到了算法的瓶颈,尤其是图像缺陷检测这一块,传统的机器视觉,很难适应复杂的场景,这就导致,比如在手机玻璃盖板检测领域,即使是不差钱的iPhone手机,在富士康等厂家依然用的是人海战术在做玻璃盖板的检测;20... 本人本身是从事工业领域的机器视觉行业的,做过不少的机器视觉方案,记得14,15年以前,都是用得比如halcon,MIL,OPENCV,对于图像的分类,分割,定位等等,传统方法已经到了算法的瓶颈,尤其是图像缺陷检测这一块,传统的机器视觉,很难适应复杂的场景,这就导致,比如在手机玻璃盖板检测领域,即使是不差钱的iPhone手机,在富士康等厂家依然用的是人海战术在做玻璃盖板的检测;20...
- 本书摘自《智能系统与技术丛书 深度学习实践:基于Caffe的解析》一文中的第1章,第1.2节,作者是薛云峰。 本书摘自《智能系统与技术丛书 深度学习实践:基于Caffe的解析》一文中的第1章,第1.2节,作者是薛云峰。
- 本书摘自《深度学习之TensorFlow入门、原理与进阶实战》一书中的第1章,第1.1节,编著是李金洪. 本书摘自《深度学习之TensorFlow入门、原理与进阶实战》一书中的第1章,第1.1节,编著是李金洪.
上滑加载中
推荐直播
-
华为云入门必修课:技术精髓知识点精讲
2024/11/07 周四 17:40-19:40
Jackie 华为云资深布道师
本期直播旨在帮开发者了解云的基本概念、云的优势、常见存储服务的原理及使用,掌握ECS的概念、功能、场景和使用等,为你的开发之路奠定坚实理论根基,帮助开发者在云计算领域提升技能,增强职业竞争力。
去报名
热门标签