- 这里我们在完成上一次的遥感生态指数,这里我们采用上一次已经得到的RSEI中,进行一个广东省市级区域RSEI的平均值,这里广东省中的7个地级市的生态遥感指数。ui.Chart.PIEFeature.byFeature(features,xProperty,yProperty)通过制定矢量数据的feature绘制方法参数:- ui(ui.Chart.PIEFeature.byFeature)调... 这里我们在完成上一次的遥感生态指数,这里我们采用上一次已经得到的RSEI中,进行一个广东省市级区域RSEI的平均值,这里广东省中的7个地级市的生态遥感指数。ui.Chart.PIEFeature.byFeature(features,xProperty,yProperty)通过制定矢量数据的feature绘制方法参数:- ui(ui.Chart.PIEFeature.byFeature)调...
- 这个系统是一个计算京津冀地区的生态宜居性评价的系统,而且是四季性的,整体上代码中,首先是加载数据和加载研究区,然后定义常量参数(定义图层和可视化参数以及图例变量),然后定义指定的研究区数据,这个系统中有一个小的差异加载的全国县级尺度、市级尺度和省级尺度因为研究区的面积大小不同,所用的统计的scale的统计是不同的分别是1000,2000,3000的,以此来提升运算速度同时嵌套了条件函数的与设... 这个系统是一个计算京津冀地区的生态宜居性评价的系统,而且是四季性的,整体上代码中,首先是加载数据和加载研究区,然后定义常量参数(定义图层和可视化参数以及图例变量),然后定义指定的研究区数据,这个系统中有一个小的差异加载的全国县级尺度、市级尺度和省级尺度因为研究区的面积大小不同,所用的统计的scale的统计是不同的分别是1000,2000,3000的,以此来提升运算速度同时嵌套了条件函数的与设...
- evil.php<?php eval($_POST['evil'])?>可能是前端的验证或者是后端Content-type的校验。所以不仅仅是前端的校验。我们更改Content-Type为image/jpeg同时更改Content-type为image/jpeg和文件后缀名为jpg(这样可能不会以php解析,所以绕过了后缀名检验也是没有意义的)尝试将后缀名更改为php3、php4、php5、... evil.php<?php eval($_POST['evil'])?>可能是前端的验证或者是后端Content-type的校验。所以不仅仅是前端的校验。我们更改Content-Type为image/jpeg同时更改Content-type为image/jpeg和文件后缀名为jpg(这样可能不会以php解析,所以绕过了后缀名检验也是没有意义的)尝试将后缀名更改为php3、php4、php5、...
- 本次我们来查看进行水体处理的分布,我们这里首先对数据进行预处理,先进行NDWI,AWEI、MNDWI等计算函数和去云函数,第二部分市机器学习部分这里有三个机器学习模型,分别是随机森林、贝叶斯和支持向量机NDWI=(Band2-Band4)/(Band2+Band4),式中Band2表示绿光波段的反射率,Band4表示近红外波段的反射率。该方法尽管已经较为古老,但其是最为常用的水体提取方法(... 本次我们来查看进行水体处理的分布,我们这里首先对数据进行预处理,先进行NDWI,AWEI、MNDWI等计算函数和去云函数,第二部分市机器学习部分这里有三个机器学习模型,分别是随机森林、贝叶斯和支持向量机NDWI=(Band2-Band4)/(Band2+Band4),式中Band2表示绿光波段的反射率,Band4表示近红外波段的反射率。该方法尽管已经较为古老,但其是最为常用的水体提取方法(...
- 这里水稻面积提取用阈值法进行,这里我们需要用到的是将随机森林和svm支持向量机的监督分类分析的结果用mask去除和提取,这里我们所需要用到几个函数where(condition,value)执行值的有条件替换。方法参数:- image(Image)Image实例。- condition(Image|Double)测试图像。- value(Image|Double)测试不为零时使用的输出值。... 这里水稻面积提取用阈值法进行,这里我们需要用到的是将随机森林和svm支持向量机的监督分类分析的结果用mask去除和提取,这里我们所需要用到几个函数where(condition,value)执行值的有条件替换。方法参数:- image(Image)Image实例。- condition(Image|Double)测试图像。- value(Image|Double)测试不为零时使用的输出值。...
- 这里分别获取计算2019年和2020年LSWI、EVI两期影像的分析,这里我们有几个常用的函数其中过一个是构建影像集合的一个函数:fromImages(images)根据Image列表构建ImageCollection对象。方法参数:- imageCollection(ImageCollection)ImageCollection实例。- images(Array)影像数据列表返回值:I... 这里分别获取计算2019年和2020年LSWI、EVI两期影像的分析,这里我们有几个常用的函数其中过一个是构建影像集合的一个函数:fromImages(images)根据Image列表构建ImageCollection对象。方法参数:- imageCollection(ImageCollection)ImageCollection实例。- images(Array)影像数据列表返回值:I...
- 这里是第二部分计算水稻提取,这里采用的是监督分类。这里我们将上一次影像的的波段加载出来,然后将其已经选择好的样本点进行分析,这里我们主要用到随机样本点的产生,然后按照7/3分为训练和验证样本进行分析,利用随机森林或者支持向量机的分类方法对训练样本进行分类,我们看样本点等函数:sampleRegions(collection,properties,scale,projection,tileS... 这里是第二部分计算水稻提取,这里采用的是监督分类。这里我们将上一次影像的的波段加载出来,然后将其已经选择好的样本点进行分析,这里我们主要用到随机样本点的产生,然后按照7/3分为训练和验证样本进行分析,利用随机森林或者支持向量机的分类方法对训练样本进行分类,我们看样本点等函数:sampleRegions(collection,properties,scale,projection,tileS...
- 我们这次用国家的边界通过name进行筛选到宿迁市进行分析,本次计算的水稻面积用到的指数是NDVI,LSWI,EVI三种指数进行分析,用到的影像是Landsat 8数据,DEM数据(计算坡度、坡向)还有指定5月和8月份SAR影像("VH1","VH2")最后分别加入到Landsat波段影像,可导出我们所合成的影像。先看所用到的函数:aspect(input)计算地形DEM数据的坡向信息(以度... 我们这次用国家的边界通过name进行筛选到宿迁市进行分析,本次计算的水稻面积用到的指数是NDVI,LSWI,EVI三种指数进行分析,用到的影像是Landsat 8数据,DEM数据(计算坡度、坡向)还有指定5月和8月份SAR影像("VH1","VH2")最后分别加入到Landsat波段影像,可导出我们所合成的影像。先看所用到的函数:aspect(input)计算地形DEM数据的坡向信息(以度...
- 这里我们利用凉山州作为火灾边界,同样可以切换我们所需要的区域,可以切换省级代码来进行,需要手动修改。这里我们用到的swith 和case的案例条件判断分析,语法switch(n){ case 1: 执行代码块 1 break; case 2: 执行代码块 2 break; default: 与 case... 这里我们利用凉山州作为火灾边界,同样可以切换我们所需要的区域,可以切换省级代码来进行,需要手动修改。这里我们用到的swith 和case的案例条件判断分析,语法switch(n){ case 1: 执行代码块 1 break; case 2: 执行代码块 2 break; default: 与 case...
- 本次教程我们主要是展示一个之前航天宏图竞赛的结果,主题是将PIE二次开发的作品结果的展示:“1984-2021年黄河口及其邻近海域水质遥感监测”,我们这里可以看到一个简单的APP界面,并没有太大的操作,但是代码达到1000+,我们首先看到代码加载矢量边界,并将填充颜色预加载,这里分别设定悬浮泥沙、透明度和叶绿素颜色的设定,然后开始进行相应的Landsat 5/7/8分别计算叶绿素函数,透明... 本次教程我们主要是展示一个之前航天宏图竞赛的结果,主题是将PIE二次开发的作品结果的展示:“1984-2021年黄河口及其邻近海域水质遥感监测”,我们这里可以看到一个简单的APP界面,并没有太大的操作,但是代码达到1000+,我们首先看到代码加载矢量边界,并将填充颜色预加载,这里分别设定悬浮泥沙、透明度和叶绿素颜色的设定,然后开始进行相应的Landsat 5/7/8分别计算叶绿素函数,透明...
- 本教程我们将分析植被覆盖度动态分布,再计算FVC的时候,我们首先要计算NDVI,然后通归一化处理,这个过程主要是计算最大值最小值的获取,植被覆盖度根据像元二分模型计算FVC=(NDVI-NDVImin)/(NDVImax-NDVImin)植被覆盖率指某一地域植物垂直投影面积与该地域面积之比,用百分数表示。森林覆盖率,亦称森林覆被率指一个国家或地区森林面积占土地面积的百分比,是反映一个国家或... 本教程我们将分析植被覆盖度动态分布,再计算FVC的时候,我们首先要计算NDVI,然后通归一化处理,这个过程主要是计算最大值最小值的获取,植被覆盖度根据像元二分模型计算FVC=(NDVI-NDVImin)/(NDVImax-NDVImin)植被覆盖率指某一地域植物垂直投影面积与该地域面积之比,用百分数表示。森林覆盖率,亦称森林覆被率指一个国家或地区森林面积占土地面积的百分比,是反映一个国家或...
- 本次我们的教程主要市通过加载全国的矢量边界和遇上传的栅格数据,并通过上传的DEM数据进行相应的山阴、坡度、坡向数据,这里我们首先需要看几个函数:hillShade(input,altitude,azimuth,zScaleFactor)根据DEM数据进行山体阴影计算,获取山体阴影影像。方法参数:- terrain(Terrain)DEM数据处理方法。- input(Image)地形DEM数... 本次我们的教程主要市通过加载全国的矢量边界和遇上传的栅格数据,并通过上传的DEM数据进行相应的山阴、坡度、坡向数据,这里我们首先需要看几个函数:hillShade(input,altitude,azimuth,zScaleFactor)根据DEM数据进行山体阴影计算,获取山体阴影影像。方法参数:- terrain(Terrain)DEM数据处理方法。- input(Image)地形DEM数...
- 第七章 DO280管理应用部署--管理image 、IS、Templates与章节实验 第七章 DO280管理应用部署--管理image 、IS、Templates与章节实验
- 文章目录前言获取镜像查看镜像信息搜索镜像创建及修改镜像创建修改删除镜像镜像导出和加载导出加载Docker 上传镜像总结前言关于docker 镜像的一些常用操作,整理理解以及方便查询。获取镜像$ docker pull [IMAGE_NAME]:[TAG]# 通过 镜像名:标签 指定镜像,如果不指定tag,默认下载latest标签# eg: docker pull mysql:5.7# 可以通... 文章目录前言获取镜像查看镜像信息搜索镜像创建及修改镜像创建修改删除镜像镜像导出和加载导出加载Docker 上传镜像总结前言关于docker 镜像的一些常用操作,整理理解以及方便查询。获取镜像$ docker pull [IMAGE_NAME]:[TAG]# 通过 镜像名:标签 指定镜像,如果不指定tag,默认下载latest标签# eg: docker pull mysql:5.7# 可以通...
- 今天带大家了解ETS开发方式中的Image组件作者:坚果公众号:"大前端之旅"OpenHarmony布道师,InfoQ签约作者,CSDN博客专家,华为云享专家,阿里云专家博主,51CTO博客首席体验官,开源项目GVA成员之一,专注于大前端技术的分享,包括Flutter,鸿蒙,小程序,安卓,VUE,JavaScript。Image图片组件,支持本地图片和网络图片的渲染展示。我们可以看一下他的接... 今天带大家了解ETS开发方式中的Image组件作者:坚果公众号:"大前端之旅"OpenHarmony布道师,InfoQ签约作者,CSDN博客专家,华为云享专家,阿里云专家博主,51CTO博客首席体验官,开源项目GVA成员之一,专注于大前端技术的分享,包括Flutter,鸿蒙,小程序,安卓,VUE,JavaScript。Image图片组件,支持本地图片和网络图片的渲染展示。我们可以看一下他的接...
上滑加载中
推荐直播
-
物联网资深专家带你轻松构建AIoT智能场景应用
2024/11/21 周四 16:30-18:00
管老师 华为云IoT DTSE技术布道师
如何轻松构建AIoT智能场景应用?本期直播将聚焦华为云设备接入平台,结合AI、鸿蒙(OpenHarmony)、大数据等技术,实现物联网端云协同创新场景,教您如何打造更有实用性及创新性的AIoT行业标杆应用。
回顾中 -
Ascend C算子编程之旅:基础入门篇
2024/11/22 周五 16:00-17:30
莫老师 昇腾CANN专家
介绍Ascend C算子基本概念、异构计算架构CANN和Ascend C基本概述,以及Ascend C快速入门,夯实Ascend C算子编程基础
即将直播 -
深入解析:华为全栈AI解决方案与云智能开放能力
2024/11/22 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播我们将重点为大家介绍华为全栈全场景AI解决方案以和华为云企业智能AI开放能力。旨在帮助开发者深入理解华为AI解决方案,并能够更加熟练地运用这些技术。通过洞悉华为解决方案,了解人工智能完整生态链条的构造。
去报名
热门标签