- 以找云宝为物体检测项目为例,介绍ModelArts模型的训练过程、安全渗透测试环境DVWA的部署过程,为WAF的部署应用提供测试平台 以找云宝为物体检测项目为例,介绍ModelArts模型的训练过程、安全渗透测试环境DVWA的部署过程,为WAF的部署应用提供测试平台
- GPT-4 是一个大型多模态模型,能接受图像和文本输入,再输出正确的文本回复。实验表明,GPT-4 在各种专业测试和学术基准上的表现与人类水平相当。例如,它通过了模拟律师考试,且分数在应试者的前 10% 左右;相比之下,GPT-3.5 的得分在倒数 10% 左右。OpenAI 花了 6 个月的时间使用对抗性测试程序和 ChatGPT 的经验教训对 GPT-4 进行迭代调整 ,从而在真实性、可... GPT-4 是一个大型多模态模型,能接受图像和文本输入,再输出正确的文本回复。实验表明,GPT-4 在各种专业测试和学术基准上的表现与人类水平相当。例如,它通过了模拟律师考试,且分数在应试者的前 10% 左右;相比之下,GPT-3.5 的得分在倒数 10% 左右。OpenAI 花了 6 个月的时间使用对抗性测试程序和 ChatGPT 的经验教训对 GPT-4 进行迭代调整 ,从而在真实性、可...
- 在进行归回模型训练涉及主流ML模型:决策树、随机森林,lightgbm等;在模型验证方面:讲解了相关评估指标以及交叉验证等;同时用lgb对特征进行优化;最后进行基于stacking方式模型融合。 在进行归回模型训练涉及主流ML模型:决策树、随机森林,lightgbm等;在模型验证方面:讲解了相关评估指标以及交叉验证等;同时用lgb对特征进行优化;最后进行基于stacking方式模型融合。
- 机器学习算法(一): 基于逻辑回归的分类预测 机器学习算法(一): 基于逻辑回归的分类预测
- 为了更好地理解神经网络如何解决现实世界中的问题,同时也为了熟悉 TensorFlow 的 API,本篇我们将会做一个有关如何训练神经网络的练习,并以此为例,训练一个类似的神经网络。 为了更好地理解神经网络如何解决现实世界中的问题,同时也为了熟悉 TensorFlow 的 API,本篇我们将会做一个有关如何训练神经网络的练习,并以此为例,训练一个类似的神经网络。
- 大家好,本次博客为大家介绍一下深度学习中的混合精度训练,并通过代码实战的方式为大家讲解实际应用的理论,并对模型进行测试。 大家好,本次博客为大家介绍一下深度学习中的混合精度训练,并通过代码实战的方式为大家讲解实际应用的理论,并对模型进行测试。
- LandCoverNet训练标签 v1.0LandCoverNet是一个全球年度土地覆被分类训练数据集,带有2018年Sentinel-1、Sentinel-2和Landsat-8任务的多光谱卫星图像的标签。LandCoverNet中的图像芯片为256 x 256像素,横跨多个瓦片。每个图像芯片包含来自以下卫星产品的时间观测数据,并带有年度等级标签,全部以栅格格式(GeoTIFF文件)存储。... LandCoverNet训练标签 v1.0LandCoverNet是一个全球年度土地覆被分类训练数据集,带有2018年Sentinel-1、Sentinel-2和Landsat-8任务的多光谱卫星图像的标签。LandCoverNet中的图像芯片为256 x 256像素,横跨多个瓦片。每个图像芯片包含来自以下卫星产品的时间观测数据,并带有年度等级标签,全部以栅格格式(GeoTIFF文件)存储。...
- 在本文中,我们会用概率的观点来看待机器学习模型,用简单的例子帮助大家理解判别式模型和生成式模型的区别。通过思考曲线拟合的问题,发现习以为常的损失函数和正则化项背后有着深刻的意义 在本文中,我们会用概率的观点来看待机器学习模型,用简单的例子帮助大家理解判别式模型和生成式模型的区别。通过思考曲线拟合的问题,发现习以为常的损失函数和正则化项背后有着深刻的意义
- 世界住区足迹和演变¶。2015年世界住区足迹¶。2015年世界住区足迹(WSF)是一个10米(0.32角秒)分辨率的二进制掩码,概述了2015年全球住区范围,是通过联合利用多时相哨兵一号雷达和陆地卫星8号光学卫星图像得出的。2015年世界住区足迹现在可以在GEE官方目录中找到,你可以在这里找到它:https://developers.google.com/earth-engine/data... 世界住区足迹和演变¶。2015年世界住区足迹¶。2015年世界住区足迹(WSF)是一个10米(0.32角秒)分辨率的二进制掩码,概述了2015年全球住区范围,是通过联合利用多时相哨兵一号雷达和陆地卫星8号光学卫星图像得出的。2015年世界住区足迹现在可以在GEE官方目录中找到,你可以在这里找到它:https://developers.google.com/earth-engine/data...
- 本文将带领大家亲手实现一个垃圾信息过滤的算法。 在正式讲解算法之前,最重要的是对整个任务有一个全面的认识,包括算法的输入和输出、可能会用到的技术,以及技术大致的流程。 本任务的目标是去识别一条短信是否为垃圾信息,即输入为一条文本信息,输出为二分类的分类结果。2002年,Paul Graham提出使用“贝叶斯推断”过滤垃圾邮件。1000封垃圾邮件可以过滤掉995封,且没有一个误判。 本文将带领大家亲手实现一个垃圾信息过滤的算法。 在正式讲解算法之前,最重要的是对整个任务有一个全面的认识,包括算法的输入和输出、可能会用到的技术,以及技术大致的流程。 本任务的目标是去识别一条短信是否为垃圾信息,即输入为一条文本信息,输出为二分类的分类结果。2002年,Paul Graham提出使用“贝叶斯推断”过滤垃圾邮件。1000封垃圾邮件可以过滤掉995封,且没有一个误判。
- 本文的任务与手写数字识别非常相似,都是基于图片的多分类任务,也都是有监督的。 本文的任务与手写数字识别非常相似,都是基于图片的多分类任务,也都是有监督的。
- 模型剪枝是应用非常广的一种模型压缩方法,其可以直接减少模型中的参数量。本文会对模型剪枝的定义、发展历程、分类以及算法原理进行详细的介绍。 模型剪枝是应用非常广的一种模型压缩方法,其可以直接减少模型中的参数量。本文会对模型剪枝的定义、发展历程、分类以及算法原理进行详细的介绍。
- 4.基于Label studio的训练数据标注指南:情感分析任务观点词抽取、属性抽取 4.基于Label studio的训练数据标注指南:情感分析任务观点词抽取、属性抽取
- 推荐系统[八]算法实践总结V2:排序学习框架(特征提取标签获取方式)以及京东推荐算法精排技术实战 推荐系统[八]算法实践总结V2:排序学习框架(特征提取标签获取方式)以及京东推荐算法精排技术实战
- 主成分分析算法(Principal Component Analysis, PCA)的目的是找到能用较少信息描述数据集的特征组合。它意在发现彼此之间没有相关性、能够描述数据集的特征,确切说这些特征的方差跟整体方差没有多大差距,这样的特征也被称为主成分。这也就意味着,借助这种方法,就能通过更少的特征捕获到数据集的大部分信息。 主成分分析算法(Principal Component Analysis, PCA)的目的是找到能用较少信息描述数据集的特征组合。它意在发现彼此之间没有相关性、能够描述数据集的特征,确切说这些特征的方差跟整体方差没有多大差距,这样的特征也被称为主成分。这也就意味着,借助这种方法,就能通过更少的特征捕获到数据集的大部分信息。
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签