- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.4.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.4.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.3.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.3.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》——[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》——[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《AI安全之对抗样本入门》一书中的第3章,第3.2节,作者是兜哥。 本节书摘来自华章计算机《AI安全之对抗样本入门》一书中的第3章,第3.2节,作者是兜哥。
- 本节书摘来自华章计算机《MXNet深度学习实战》一书中的第3章,第3.1节,作者是魏凯峰。 本节书摘来自华章计算机《MXNet深度学习实战》一书中的第3章,第3.1节,作者是魏凯峰。
- 本节书摘来自华章计算机《MXNet深度学习实战》一书中的第2章,第2.3节,作者是魏凯峰。 本节书摘来自华章计算机《MXNet深度学习实战》一书中的第2章,第2.3节,作者是魏凯峰。
- 本节书摘来自华章计算机《Keras深度学习实战》一书中的第1章,第1.2.2节,作者是拉蒂普·杜瓦(Rajdeep Dua)[印] 曼普里特·辛格·古特(Manpreet Singh Ghotra) 著 罗 娜 祁佳康 译。 本节书摘来自华章计算机《Keras深度学习实战》一书中的第1章,第1.2.2节,作者是拉蒂普·杜瓦(Rajdeep Dua)[印] 曼普里特·辛格·古特(Manpreet Singh Ghotra) 著 罗 娜 祁佳康 译。
- 本书摘自《深度学习:主流框架和编程实战》——书中第2章,第2.3.4节,作者是赵涓涓、强彦。 本书摘自《深度学习:主流框架和编程实战》——书中第2章,第2.3.4节,作者是赵涓涓、强彦。
- 本书摘自《深度学习:主流框架和编程实战》——书中第2章,第2.3.1节,作者是赵涓涓、强彦。 本书摘自《深度学习:主流框架和编程实战》——书中第2章,第2.3.1节,作者是赵涓涓、强彦。
- @[toc]在上一篇文章中完成了前期的准备工作,见链接:FlashInternImage实战:使用FlashInternImage实现图像分类任务(一)前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解,模型的介绍和实验效果等内容。接下来,这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入i... @[toc]在上一篇文章中完成了前期的准备工作,见链接:FlashInternImage实战:使用FlashInternImage实现图像分类任务(一)前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解,模型的介绍和实验效果等内容。接下来,这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入i...
- @[toc]在上一篇文章中完成了前期的准备工作,见链接:SG-Former实战:使用SG-Former实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torch... @[toc]在上一篇文章中完成了前期的准备工作,见链接:SG-Former实战:使用SG-Former实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torch...
- 深度学习已经成为现代人工智能的核心技术,伴随着各种深度学习框架的兴起。本文将对目前主流的深度学习框架进行对比分析,涵盖 TensorFlow、PyTorch、OneFlow、MXNet 和 MindSpore。同时,我们将详细介绍相关的工具链,包括 conda、Anaconda、pip、torch、PyTorch 和 TensorFlow,帮助开发者更好地选择适合自己的框架和工具。 深度学习已经成为现代人工智能的核心技术,伴随着各种深度学习框架的兴起。本文将对目前主流的深度学习框架进行对比分析,涵盖 TensorFlow、PyTorch、OneFlow、MXNet 和 MindSpore。同时,我们将详细介绍相关的工具链,包括 conda、Anaconda、pip、torch、PyTorch 和 TensorFlow,帮助开发者更好地选择适合自己的框架和工具。
- TensorFlow 是一个广泛使用的深度学习框架,它简化了神经网络的构建和训练过程。在这篇文章中,我们将介绍如何使用 TensorFlow 构建一个简单的前馈神经网络(Feedforward Neural Network, FNN)来进行图像分类。我们将逐步讲解从数据准备、模型构建、训练到评估的整个过程。 1. 准备工作首先,我们需要安装 TensorFlow。如果你还没有安装它,可以使用... TensorFlow 是一个广泛使用的深度学习框架,它简化了神经网络的构建和训练过程。在这篇文章中,我们将介绍如何使用 TensorFlow 构建一个简单的前馈神经网络(Feedforward Neural Network, FNN)来进行图像分类。我们将逐步讲解从数据准备、模型构建、训练到评估的整个过程。 1. 准备工作首先,我们需要安装 TensorFlow。如果你还没有安装它,可以使用...
- 一、从零开始实现 1.生成数据集根据带有噪声的线性模型构造一个人造数据集。 我们的任务是使用这个有限样本的数据集来恢复这个模型的参数。 我们将使用低维数据,这样可以很容易地将其可视化。 在下面的代码中,我们生成一个包含1000个样本的数据集, 每个样本包含从标准正态分布中采样的2个特征。def synthetic_data(w, b, num_examples): #@save "... 一、从零开始实现 1.生成数据集根据带有噪声的线性模型构造一个人造数据集。 我们的任务是使用这个有限样本的数据集来恢复这个模型的参数。 我们将使用低维数据,这样可以很容易地将其可视化。 在下面的代码中,我们生成一个包含1000个样本的数据集, 每个样本包含从标准正态分布中采样的2个特征。def synthetic_data(w, b, num_examples): #@save "...
- 详解RemoveError: 'setuptools' is a dependency of conda and cannot be removed from当你尝试从Conda环境中移除某个软件包时,有时你可能会遇到RemoveError: 'setuptools' is a dependency of conda and cannot be removed from的错误信息。这个错误表... 详解RemoveError: 'setuptools' is a dependency of conda and cannot be removed from当你尝试从Conda环境中移除某个软件包时,有时你可能会遇到RemoveError: 'setuptools' is a dependency of conda and cannot be removed from的错误信息。这个错误表...
上滑加载中
推荐直播
-
昇腾云服务ModelArts深度解析:理论基础与实践应用指南
2024/12/03 周二 14:30-16:30
Alex 华为云学堂技术讲师
如何快速创建和部署模型,管理全周期AI工作流呢?本期直播聚焦华为昇腾云服务ModelArts一站式AI开发平台功能介绍,同时结合基于ModelArts 的实践性实验,帮助开发者从理论到实验更好地理解和使用ModelArts。
回顾中 -
深度解析鸿蒙应用入门级开发者认证
2024/12/04 周三 16:00-18:00
Edi 华为云学堂技术讲师
本期直播将为开发者带来HCCDA-HarmonyOS&Cloud Apps认证课程系统介绍、详细阐述HarmonyOS 技术架构、理解HarmonyOS 技术理念,通过实例带领开发者应用快速上手。
去报名 -
鸿蒙应用入门:轻松掌握ArkTS开发语言
2024/12/05 周四 16:00-18:00
Edi 华为云学堂技术讲师
本期直播课旨在让开发者了解ArkTS语法、轻松掌握ArkUI组件开发,带你零门槛入门鸿蒙开发,掌握状态管理实验和渲染控制实验。
即将直播
热门标签