- ps:本文转载自知乎用户ID:George的NLP面筋。 文章目录 一面(技术面)1. 简要的自我介绍。2. 研究生阶段最有挑战的项目是什么?3. 对于这个项目,传统的方法是怎么样的?4. 列举... ps:本文转载自知乎用户ID:George的NLP面筋。 文章目录 一面(技术面)1. 简要的自我介绍。2. 研究生阶段最有挑战的项目是什么?3. 对于这个项目,传统的方法是怎么样的?4. 列举...
- 学习总结 上次的NLTK是英文工具集,LTP则是中文工具集。同样能用于词法分析(分词、词性标注、命名实体识别)、句法分析(依存句法分析)和语义分析(语义角色标注和语义依存分析)等。 文章目录 ... 学习总结 上次的NLTK是英文工具集,LTP则是中文工具集。同样能用于词法分析(分词、词性标注、命名实体识别)、句法分析(依存句法分析)和语义分析(语义角色标注和语义依存分析)等。 文章目录 ...
- 论文题目: Federated Learning of Topic-to-Essay Generation with Knowledge tag 实验采用 知乎的数据集 创新点: 生成器中 引入动... 论文题目: Federated Learning of Topic-to-Essay Generation with Knowledge tag 实验采用 知乎的数据集 创新点: 生成器中 引入动...
- 条件随机场模型是由Lafferty在2001年提出的一种典型的判别式模型。它在观测序列的基础上对目标序列进行建模,重点解决序列化标注的问题条件随机场模型既具有判别式模型的优点,又具有产生式模型考虑到上下文标记间的转移概率,以序列化形式进行全局参数优化和解码的特点,解决了其他判别式模型(如最大熵马尔科夫模型)难以避免的标记偏置问题。 ... 条件随机场模型是由Lafferty在2001年提出的一种典型的判别式模型。它在观测序列的基础上对目标序列进行建模,重点解决序列化标注的问题条件随机场模型既具有判别式模型的优点,又具有产生式模型考虑到上下文标记间的转移概率,以序列化形式进行全局参数优化和解码的特点,解决了其他判别式模型(如最大熵马尔科夫模型)难以避免的标记偏置问题。 ...
- NLP 预训练模型 自然语言处理标志 什么是预训练模型? 预训练模型是由其他人创建的用于解决类似问题的模型。我们可以使用在其他问题上训练的模型作为起点,而不是从头开始构建模型来解决类似的问题。预训练... NLP 预训练模型 自然语言处理标志 什么是预训练模型? 预训练模型是由其他人创建的用于解决类似问题的模型。我们可以使用在其他问题上训练的模型作为起点,而不是从头开始构建模型来解决类似的问题。预训练...
- Bert+BiLSTM做情感分析 情感分析 情感分析一类的任务比如商品评价正负面分析,敏感内容分析,用户感兴趣内容分析、甚至安全领域的异常访问日志分析等等实际上都可以用文本分类的方式去做,情感分析的问... Bert+BiLSTM做情感分析 情感分析 情感分析一类的任务比如商品评价正负面分析,敏感内容分析,用户感兴趣内容分析、甚至安全领域的异常访问日志分析等等实际上都可以用文本分类的方式去做,情感分析的问...
- 【NLP】⚠️学不会打我! 半小时学会基本操作 14⚠️ 文本处理 概述文本处理 概述 从今天开始我们将开启一段自然语言处理 (NLP) 的旅程. 自然语言处理可以让来处理, 理解, 以... 【NLP】⚠️学不会打我! 半小时学会基本操作 14⚠️ 文本处理 概述文本处理 概述 从今天开始我们将开启一段自然语言处理 (NLP) 的旅程. 自然语言处理可以让来处理, 理解, 以...
- 最近斯坦福的CS224N开课了,看了下课程介绍,去年google发表的Transformer以及最近特别火的Contextual Word Embeddings都会在今年的课程中进行介绍。NLP领域确实是一个知识迭代特别快速的领域,每年都有新的知识冒出来。所以身处NLP领域的同学们要时刻保持住学习的状态啊。笔者又重新在B站上看了这门课程... 最近斯坦福的CS224N开课了,看了下课程介绍,去年google发表的Transformer以及最近特别火的Contextual Word Embeddings都会在今年的课程中进行介绍。NLP领域确实是一个知识迭代特别快速的领域,每年都有新的知识冒出来。所以身处NLP领域的同学们要时刻保持住学习的状态啊。笔者又重新在B站上看了这门课程...
- BERT 简介 BERT是2018年google 提出来的预训练的语言模型,并且它打破很多NLP领域的任务记录,其提出在nlp的领域具有重要意义。预训练的(pre-train)的语言模型通过无监督的学习掌握了很多自然语言的一些语法或者语义知识,之后在做下游的nlp任务时就会显得比较容易。BERT在做下游的有监督nlp任务时就像一个做了... BERT 简介 BERT是2018年google 提出来的预训练的语言模型,并且它打破很多NLP领域的任务记录,其提出在nlp的领域具有重要意义。预训练的(pre-train)的语言模型通过无监督的学习掌握了很多自然语言的一些语法或者语义知识,之后在做下游的nlp任务时就会显得比较容易。BERT在做下游的有监督nlp任务时就像一个做了...
- 导读:随着Bert的发布,预训练 ( pre-train ) 成为NLP领域最为热门的方向之一,大规模的无监督语料加上少量有标注的语料成为了NLP模型的标配。本文将介绍几种常见的语言模型的基本原理和使用方式,以及语言模型在网易严选NLP业务上的实践,包括分类、文本匹配、序列标注、文本生成等。 01 前言 文本的表征经历了漫长的发展... 导读:随着Bert的发布,预训练 ( pre-train ) 成为NLP领域最为热门的方向之一,大规模的无监督语料加上少量有标注的语料成为了NLP模型的标配。本文将介绍几种常见的语言模型的基本原理和使用方式,以及语言模型在网易严选NLP业务上的实践,包括分类、文本匹配、序列标注、文本生成等。 01 前言 文本的表征经历了漫长的发展...
- 命名体识别(Name Entity Recognition)是自然语言处理(Nature Language Processing)领域中比较重要的一个任务,几乎百分之50的和文本处理有关的项目中都会涉及到命名体识别。笔者认为其中最关键的原因是:从广义的角度来讲,如果把一句话比作一串珍珠的话,命名实体就是这串珍珠项链中的珍珠,句子的其他部... 命名体识别(Name Entity Recognition)是自然语言处理(Nature Language Processing)领域中比较重要的一个任务,几乎百分之50的和文本处理有关的项目中都会涉及到命名体识别。笔者认为其中最关键的原因是:从广义的角度来讲,如果把一句话比作一串珍珠的话,命名实体就是这串珍珠项链中的珍珠,句子的其他部...
- 今天我们来做NLP(自然语言处理)中Sequence2Sequence的任务。其中Sequence2Sequence任务在生活中最常见的应用场景就是机器翻译。除了机器翻译之外,现在很流行的对话机器人任务,摘要生成任务都是典型的Sequence2Sequence。Sequence2Sequence的难点在于模型需要干两件比较难的事情: ... 今天我们来做NLP(自然语言处理)中Sequence2Sequence的任务。其中Sequence2Sequence任务在生活中最常见的应用场景就是机器翻译。除了机器翻译之外,现在很流行的对话机器人任务,摘要生成任务都是典型的Sequence2Sequence。Sequence2Sequence的难点在于模型需要干两件比较难的事情: ...
- 情感分析(Sentiment Analysis)是自然语言处理里面比较高阶的任务之一。仔细思考一下,这个任务的究极目标其实是想让计算机理解人类的情感世界。我们自己都不一定能完全控制和了解自己的情感,更别说机器了。 不过在人工智能的认知智能阶段(人工智能三阶段——计算智能,感知智能,认知智能),商家还是可以用它来做一些商品或服务的评论分... 情感分析(Sentiment Analysis)是自然语言处理里面比较高阶的任务之一。仔细思考一下,这个任务的究极目标其实是想让计算机理解人类的情感世界。我们自己都不一定能完全控制和了解自己的情感,更别说机器了。 不过在人工智能的认知智能阶段(人工智能三阶段——计算智能,感知智能,认知智能),商家还是可以用它来做一些商品或服务的评论分...
- 前言 语音系统中语音内容识别 ( ASR ) 的精准性,是影响智能语音产品发展的关键制约因素,用户query的文本,通常是由ASR系统将用户的语音命令转换而成,但由于技术上的原因,这些由ASR生成的文本可能包含错误,继而导致后续的用户意图理解出现偏差。如何利用NLP技术对ASR的query文本进行预处理纠错成了一个亟待解决的问题。 ... 前言 语音系统中语音内容识别 ( ASR ) 的精准性,是影响智能语音产品发展的关键制约因素,用户query的文本,通常是由ASR系统将用户的语音命令转换而成,但由于技术上的原因,这些由ASR生成的文本可能包含错误,继而导致后续的用户意图理解出现偏差。如何利用NLP技术对ASR的query文本进行预处理纠错成了一个亟待解决的问题。 ...
- 前言 内容会涉及自然语言处理的各个方面知识内容和具体操作:包括但不仅限于词法分析,句法分析,语义分析,文本聚类,文本分类,情感分析,文本摘要生成,主题模型,词嵌入,文本语义相似度,自然语言推理,机器翻译,语言模型,信息抽取,关系预测,对话,指代消解等等。 针对中文的自然语言处理,我们需要先将段落和句子切分为词语,这是最基础的一步操作... 前言 内容会涉及自然语言处理的各个方面知识内容和具体操作:包括但不仅限于词法分析,句法分析,语义分析,文本聚类,文本分类,情感分析,文本摘要生成,主题模型,词嵌入,文本语义相似度,自然语言推理,机器翻译,语言模型,信息抽取,关系预测,对话,指代消解等等。 针对中文的自然语言处理,我们需要先将段落和句子切分为词语,这是最基础的一步操作...
上滑加载中
推荐直播
-
Ascend C算子编程之旅:基础入门篇
2024/11/22 周五 16:00-17:30
莫老师 昇腾CANN专家
介绍Ascend C算子基本概念、异构计算架构CANN和Ascend C基本概述,以及Ascend C快速入门,夯实Ascend C算子编程基础
回顾中 -
深入解析:华为全栈AI解决方案与云智能开放能力
2024/11/22 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播我们将重点为大家介绍华为全栈全场景AI解决方案以和华为云企业智能AI开放能力。旨在帮助开发者深入理解华为AI解决方案,并能够更加熟练地运用这些技术。通过洞悉华为解决方案,了解人工智能完整生态链条的构造。
回顾中 -
华为云DataArts+DWS助力企业数据治理一站式解决方案及应用实践
2024/11/27 周三 16:30-18:00
Walter.chi 华为云数据治理DTSE技术布道师
想知道数据治理项目中,数据主题域如何合理划分?数据标准及主数据标准如何制定?数仓分层模型如何合理规划?华为云DataArts+DWS助力企业数据治理项目一站式解决方案和应用实践告诉您答案!本期将从数据趋势、数据治理方案、数据治理规划及落地,案例分享四个方面来助力企业数据治理项目合理咨询规划及顺利实施。
去报名
热门标签