-
在rcS增加了代码,并且新建了脚本,但是重启OS之后,rcS还原,脚本也被删除
-
为了保持在云计算市场的竞争力并不断提升用户体验,华为云(HUAWEI CLOUD)未来可以考虑以下几点优化建议。这些建议覆盖了技术创新、用户体验、安全性、合规性、以及生态系统建设等方面。 以及部分小反馈问题。 ### 技术创新 1. **多云和混合云支持**: - 提供更加完善的多云和混合云管理工具,帮助企业无缝管理来自不同供应商的云资源。 - 增强跨云的互操作性和数据迁移能力,使用户能够轻松地在不同云环境之间迁移工作负载和数据。 2. **AI/ML能力深化**: - 加大对人工智能和机器学习平台的研发投入,增强模型训练和部署的自动化程度。 - 提供更多领域的预训练模型,涵盖自然语言处理、计算机视觉等热门应用场景。 3. **边缘计算扩展**: - 扩展边缘计算节点的覆盖范围,提高边缘计算服务的性能和可靠性,满足越来越多物联网和实时数据处理的需求。 - 推出针对特定行业的边缘计算解决方案,例如智能制造、智慧城市等。 4. **区块链技术应用**: - 深入探索区块链技术在供应链管理、金融等领域的应用,推出基于区块链的服务平台,提供可信的多方协作机制。 ### 用户体验 1. **统一的用户界面**: - 开发统一的控制台界面,实现所有云产品和服务的集中管理,提供一致的用户体验。 - 增加更多自定义视图和仪表板功能,使用户能够根据自身需求定制界面布局。 2. **API易用性**: - 优化API文档和开发者工具,提供更详细的使用示例和最佳实践,降低开发者的入门门槛。 3. **智能助手和推荐系统**: - 引入智能助手功能,实时分析用户行为,提供个性化的操作建议和优化方案。 - 通过机器学习算法,根据用户的使用模式和历史数据,推荐最适合的云资源配置。 ### 安全性和合规性 1. **零信任架构**: - 推广零信任安全架构,通过严格的身份验证和权限控制,确保每一次访问都经过认证和授权。 - 提供全面的安全评估工具,帮助企业识别和修补安全漏洞。 2. **隐私保护和数据主权**: - 确保云服务符合各国的数据隐私法规,推出数据主权保护方案,允许用户选择数据存储位置。 - 提供先进的数据加密和匿名化技术,保护用户敏感信息。 ### 成本管理 1. **智能成本优化**: - 开发智能成本优化工具,实时监测用户资源使用情况,提供节省开支的具体建议。 - 提供可视化的成本分析和预测工具,帮助用户更好地规划预算和资源分配。 2. **灵活的计费模式**: - 推出更多灵活的计费选项,如按需计费、预留实例折扣、包年包月等,满足不同业务场景下的需求。 - 提供细粒度的费用拆分和追踪,帮助企业精确分摊云成本到各业务部门或项目团队。 ### 生态系统建设 1. **合作伙伴计划**: - 拓展与ISV(独立软件供应商)、SI(系统集成商)和MSP(托管服务提供商)的合作,建立强大的合作伙伴生态系统。 - 提供丰富的合作伙伴激励政策,鼓励合作伙伴开发和推广基于华为云的平台和应用。 2. **开发者社区**: - 建设和维护一个活跃的开发者社区,举办定期的技术交流活动、黑客马拉松和开发者大赛,吸引全球开发者参与。 - 提供开放的API和SDK,支持更多第三方开发者基于华为云构建创新应用。 ### 全球化布局 1. **全球数据中心布局**: - 加快全球数据中心布局,特别是在新兴市场和关键区域,提高全球用户的服务可达性和性能。 - 提供多区域高可用性的解决方案,确保业务连续性和数据灾备能力。 2. **本地化服务和支持**: - 提供符合各国法规和市场需求的本地化服务和解决方案。 - 在主要市场设立本地化客户支持团队,提供7x24小时的技术支持和服务。 上周体验的一个一键部署AI生图应用,非常影响体验,说是体验,还给人计费(尴尬),很多报错,回帖汇报之后,没人给出反馈?不过,对于云服务主机,使用redis 数据库之类的项目部署,还是很顺利,IDE 使用方面还是有待跟国际上通用的IDE接轨,使得设计更加全面,更加友好!希望这些建议能为华为云未来的发展提供一些有价值的参考。
-
HPCRunner : 贾维斯智能助手源码获取地址:https://gitee.com/openeuler/hpcrunner 今天浅谈使用贾维斯工具安装应用的心得感受,总得来说,非常便于二次部署调优,自动式安装可以大大提升效率。下文以WRF的一个数据处理工具WPS部署来展开演示,因为WPS需要基于安装WRF成功下部署,首先得安装WRF,我这里是利用bisheng编译器+hmpi通信库基于openblas、scalapack以及fftw安装WRF,如果手动编译来说,可能就相当于需要编译7次,其中hmpi编译还挺久,那么利用贾维斯工具非常方便快捷,写成一个template直接一键式安装,如果中间有错误,会立马停下来告知哪个环节错误。话不多说,下面开始演示下安装过程。 首先,去gitee把贾维斯工具下载到服务器上,多种方式下载,git clone或者wget等都可以下载,你会发现贾维斯下有很多目录,当然这些目录名称都不难理解,在gitee上也有相应说明,这些目录是做什么的,用于存放些什么东西。下载后首次使用需要初始化贾维斯工具环境变量,直接source ./init.sh就行。那么安装一款应用,依我个人理解,重心是写好这个templates,其次在用贾维斯命令去调用安装。那么,怎么写这个template,对于初次使用,无非就是照葫芦画瓢,我这里编译是wrf4.2+wps4.1,wrf4.2是参考现有的编译方式cid:link_0,从它的依赖编起前面的[SERVER],指的是节点,我是在单节点上部署,所以就无关紧要,[DOWNLOAD]指的是该应用的软件包下载地址,写进去就是一键式下载,如果链接失效,部署时还是提示,如果包存在了也会提示,非常nice的一点。[DEPENDENCY]这里罗列了WRF和WPS的依赖,可能你会对./jarvis -install XXX/XXX xxx这里表示疑问,这里就是单单安装某个软件(包括但不限于编译器、通信库、基础库、依赖、简单软件等等)然后一连串的./jarvis -install就可以一键式的把wrf和wps的依赖都部署好,关于./jarvis -install如何使用,gitee也有文档说明,也是非常容易理解。然后[ENV]指的是当安装好相关的依赖后,我们需要给安装WRF和WPS注入环境变量,加载到系统中,贾维斯工具都是采用module的管理方式,非常便捷。接下来是安装主应用,重头戏来了,[APP]这里是规划了安装的目录,[BUILD]里面写的如何编译WRF和WPS的,其中有一些细节,${JARVIS_某某某}这些变量都是贾维斯的初始化后设定好的,我们直接引用,不需要自己敲一大串路径。关于编译过程中需要修改源码,我们可以采用sed命令直接更改,这里可能需要大家对sed命令熟悉,简单修改的可能比较好使,如果对于大批量的修改,建议大家还是写好后,直接复制进去。整体来说,你从这个[BUILD]中可以看到你的编译全过程,把所有编译的命令都一层接一层的执行下来,对比手动编译,省去了各组件中间编译的空隙时间。尤其对于有些同学需要在别的环境二次部署,非常的快捷。那么整个template已经写好了,同学们有个疑问就是怎么去调用这里面一系列的安装呢?首先需要./jarvis -use 这个template 会提示现在已经成功加载该template,然后./jarvis -d一键式下载软件包因为我这里已经提前下载了包,它会检测到已经存在,就提示already DOWNLOAD然后就是安装依赖./jarvis -dp这里如果是系统中没有安装的话,它会按照你template上写的依赖逐个安装,中途要是有错误,会停止,此时你需要去检查是哪个依赖编译有问题也很快定位出来,最后所有的安装好后,会提示successfully,然后最后一步就是./jarvis -b去调用[BUILD]里面的所有命令,至此整个应用已经安装完成了。不得不说,贾维斯工具的举世真的大大提升了部署应用的效率,尤其在HPC行业,很多应用光是手动部署都不简单,甚至有些应用光依赖都上十个。同时也方便了使用不同编译器等部署。以上就是我使用贾维斯工具的心得感受,最后还是推荐大家体验体验!
-
为什么了解硬件架构对于编写高性能程序至关重要? 如何选择适合特定任务的硬件配置?
-
HPC系统的硬件架构包括哪些关键组件,如何理解它们的作用?
-
如何识别和解决HPC应用中的性能问题,包括瓶颈和通信开销?
-
统? 什么是并行编程,为什么它对HPC至关重要? 有哪些主要的并行编程模型,如MPI和OpenMP,它们是如何工作的? 初学者应该从哪里开始学习并行编程?
-
什么是HPC,它的主要特点是什么?
-
未来,手机消失;笔记本消失;台式机消失;相关显示器消失;都全部简约成腕式,不能称作腕式手表,太狭窄了,不如叫“腕宇宙”,或叫“万宇宙”。显示方法像投影仪,只要不泄露秘密,可以在任何介质上投影并操作影像,比如水、光束等任何介质。可以想象,未来,人的行为,其科技感、神秘感更强,每一个人的举动都不可思议,外星人来到地球,会看到地球人类都在科幻电影里。
-
yolov8导出onnx,通过 onnx-tf转pb,然后pb转om失败。日志在附件中。
-
由于项目实际部署需求,需要开发自定义算子,当前模型转换成了ONNX格式,也可以转换成caffe格式(原格式pytorch的pt格式),但根据官方文档及论坛参考信息,无法有效开发对应的算子(算子编译,安装后无法找到),请问该问题如何解决呢?
-
本文主要介绍说明XQ6657Z35-EVM评估板Cameralink回环例程的功能、使用步骤以及各个例程的运行效果。(基于TI KeyStone架构C6000系列TMS320C6657双核C66x 定点/浮点DSP以及Xilinx Zynq-7000系列SoC处理器XC7Z035-2FFG676I设计的异构多核评估板,由核心板与评估底板组成。评估板CameraLink功能支持2路Base输入、或者2路Base输出、或者1路Full 输入或输出)ZYNQ7035 PL Cameralink回环例程1.1.1 例程位置ZYNQ例程保存在资料盘中的Demo\ZYNQ\PL\base_cameralink_loop\prj文件夹下。1.1.2 功能简介Cameralink回环例程将J3、J4当作两个独立的Base Cameralink接口使用,一个接收,另一个发送。Cameralink接收端,利用Xilinx ISERDESE2原语进行串/并转换,将LVDS串行数据转换成28bit的cameralink并行数据。解串后的并行数据通过ila进行在线分析和查看,并实时检测并行数据是否有误码。Cameralink发送端,利用Xilinx OSERDESE2原语进行并/串转换,将本地28bit cameralink并行数据串行化为LVDS数据发送出去。1.1.3 Cameralink接口时序说明1.1.3.1 Cameralink三种配置模式Base模式:只需一根Cameralink线缆;4对差分数据、1对差分时钟;Medium模式:需要两根Cameralink线缆;8对差分数据、2对差分时钟;Full模式:需要两根Cameralink线缆;12对差分数据、3对差分时钟。各种模式下,统一都包含一组控制口和一组串口。控制口有4根信号,用于图像采集端对相机的IO控制;串口用于图像采集端对相机参数的配置。1.1.3.2 单路差分数据与时钟之间时序关系单路Cameralink差分数据与随路的差分像素时钟之间的时序关系如下图所示:一个时钟周期内传输7bits串行数据,首先传输串行数据的最高位,最后传输串行数据的最低位。7bits数据起始于像素时钟高电平的中间位置,即数据的最高位在Clock高电平的中间时刻开始传输。Clock高电平时间比Clock低电平时间多一个bit位。1.1.3.3 通道传输数据与图像数据映射关系1路差分数据通道上,一个Clock像素时钟周期传输7bits串行数据,那么4路差分数据通道总共就是4*7bits=28bits,我们称这28bits数据为并行数据,为了方便描述,这28bits数据记为TX/RX27~0。Cameralink Base模式下,这28bits数据与图像行/场同步/数据有效标记、图像数据的映射关系如下图所示:TX/RX24映射为行同步标记LVAL,TX/RX25映射为场同步标记FVAL,TX/RX26映射为图像数据有效标记DVAL,TX/RX23未使用,其余位对应图像数据。1.1.3.4 28位并行数据与4路差分数据传输通道之间的映射关系上述28位并行数据是如何通过4路差分数据传输通道进行传输的呢?28位并行数据映射到4路差分数据传输通道各个时刻点的位置关系如下图所示:1.1.4 管脚约束ZYNQ PL工程管脚约束如下图所示:1.1.5 例程使用1.1.5.1 连接Cameralink线缆使用Cameralink线缆将J3、J4两个接口连接在一起:1.1.5.2 加载运行ZYNQ程序1.1.5.2.1 打开Vivado工程打开Vivado示例工程:工程打开后界面如下图所示:1.1.5.2.2 下载ZYNQ PL程序下载bit流文件base_cameralink_loop.bit,并且配套base_cameralink_loop.ltx调试文件,如下图下载界面所示:1.1.5.3 运行结果说明ZYNQ PL端提供的ILA调试窗口,可以实时抓取采集Cameralink并行信号以及错误检测信号的时序波形。hw_ila_1调试界面抓取Cameralink并行发送数据,是一个28bits的累加数:hw_ila_2调试界面抓取Cameralink并行接收数据、接收误码统计以及接收误码实时标识信号,如下图所示:cameralink_rx_err_num显示有数值,则说明Cameralink接收过程中存在误码。可能在开始通信初始化期间存在误码现象,导致cameralink_rx_err_num误码统计累加。待程序下载完毕后,如果Cameralink通信正常的话,cameralink_rx_err_num误码统计应该不会再累加。如果cameralink_rx_err_num误码统计继续不断累加,则通过触发camera_rx_error信号可以捕捉到误码具体发生时刻。1.1.5.4 退出实验Vivado调试界面Hardware Manager窗口,右键单击localhost(1),在弹出的菜单中点击Close Server,断开ZYNQ JTAG仿真器与板卡的连接:最后,关闭板卡电源,结束。
-
基于【NPU+AI ISP】方案开发边缘计算数据盒,对标Hi3559A平台边缘计算数据盒性能全面提升,引用达芬奇新DaVinci架构,双NPU组合,算力提升一倍,支持MindSpore AI开发环境,平滑升级无压力,避免因不同选型导致移植周期过长,可以无缝切换快速落地应用,减少运维成本,且供货保持稳定,是升级Hi3559A平台边缘计算方案的最佳选型。最新发布的SDK版本把双核NPU(4T+6T)都开放出来,但两个NPU核底层的模型和配套工具有区别,如果做边缘计算数据盒开发,总算力可以到10T。开发AI摄像机如需使用6T的NPU核,可使用最新的SDK版本升级成在程序运行时通过软开关来控制启动,实现白天用6T NPU核来跑其它算法,夜间启动AI ISP的最优状态。视频编解码均支持行业领先的H.264、H.265标准,解码最大可支持10路1080p@30fps,编码最大可支持4K@70fps,SoC具备PCIE的桥接功能,可以通过2颗芯片桥接支持4路4k的接入。编解码整体性能优异且稳定,降低网络波动带来的影响,带AI ISP优化视频画质,输出超高清且细腻画质的同时保持画面高度流畅性。
-
↵大家好!我在跑MindScience中的MindElec时,遇到了一些安装上的问题。我基于ubuntu 22.04系统,使用anaoncda成功安装了mindspore-gpu,使用指令检测:python -c "import mindspore;mindspore.run_check()"得到:mindspore version 1.9.0The result of multiplication calculation is correct, MindSpore has been installed successfully!其中,为了安装MindElec库,安装的python=3.7,cuda=11.6。由于没有ascend硬件,使用的GPU,则在cid:link_0中,将代码train.py的device_target手动改为“GPU”:context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU", save_graphs_path="./graph")然而,运行时报错如下,报错一:[ERROR] ME(9704:139975885083712,MainProcess):2023-01-02-19:17:19.449.580 [mindspore/run_check/_check_version.py:194] Cuda ['10.1', '11.1', '11.6'] version(libcu*.so need by mindspore-gpu) is not found, please confirm that the path of cuda is set to the env LD_LIBRARY_PATH, or check whether the CUDA version in wheel package and the CUDA runtime in current device matches, please refer to the installation guidelines: https://www.mindspore.cn/install[ERROR] ME(9704:139975885083712,MainProcess):2023-01-02-19:17:19.449.691 [mindspore/run_check/_check_version.py:194] Cuda ['10.1', '11.1', '11.6'] version(libcu*.so need by mindspore-gpu) is not found, please confirm that the path of cuda is set to the env LD_LIBRARY_PATH, or check whether the CUDA version in wheel package and the CUDA runtime in current device matches, please refer to the installation guidelines: https://www.mindspore.cn/install[ERROR] ME(9704:139975885083712,MainProcess):2023-01-02-19:17:19.455.499 [mindspore/run_check/_check_version.py:194] Cuda ['10.1', '11.1', '11.6'] version(libcudnn*.so need by mindspore-gpu) is not found, please confirm that the path of cuda is set to the env LD_LIBRARY_PATH, or check whether the CUDA version in wheel package and the CUDA runtime in current device matches, please refer to the installation guidelines: https://www.mindspore.cn/install[ERROR] ME(9704:139975885083712,MainProcess):2023-01-02-19:17:19.455.585 [mindspore/run_check/_check_version.py:194] Cuda ['10.1', '11.1', '11.6'] version(libcudnn*.so need by mindspore-gpu) is not found, please confirm that the path of cuda is set to the env LD_LIBRARY_PATH, or check whether the CUDA version in wheel package and the CUDA runtime in current device matches, please refer to the installation guidelines: https://www.mindspore.cn/install[ERROR] ME(9704,7f4eace85440,python):2023-01-02-19:17:19.504.811 [mindspore/ccsrc/runtime/hardware/device_context_manager.cc:46] LoadDynamicLib] Load dynamic library libmindspore_gpu failed, returns [libcudnn.so.8: cannot open shared object file: No such file or directory].报错二:RuntimeError: Create device context failed, please make sure target device:GPU is available.----------------------------------------------------- C++ Call Stack: (For framework developers)----------------------------------------------------mindspore/ccsrc/runtime/hardware/device_context_manager.cc:208 GetOrCreateDeviceContext这里表示未检测出cuda11.6和GPU,但我的python解释器里有cuda11.6,且python -c "import mindspore;mindspore.run_check()"测试都通过了。请问大家如何解决?非常感谢!
-
【开源资料】XQTyer评估板例程使用手册.pdf链接:https://share.weiyun.com/8csewUvh 密码:8r9by7CSDN搜索【DSP+ZYNQ多核例程使用手册-XQTyer】XQ6657Z35/45-EVM 高速数据处理评估板(XQTyer 评估板)由广州星嵌电子科技有限公司自主研发,包含一片TI DSP TMS320C6657和一片Xilinx ZYNQ-7000 SoC 处理器XC7Z035-2FFG676I。适用于无人机蜂群、软件无线电系统,基带信号处理,无线仿真平台,高速图像采集、处理等领域。
推荐直播
-
华为AI技术发展与挑战:集成需求分析的实战指南
2024/11/26 周二 18:20-20:20
Alex 华为云学堂技术讲师
本期直播将综合讨论华为AI技术的发展现状,技术挑战,并深入探讨华为AI应用开发过程中的需求分析过程,从理论到实践帮助开发者快速掌握华为AI应用集成需求的框架和方法。
去报名 -
华为云DataArts+DWS助力企业数据治理一站式解决方案及应用实践
2024/11/27 周三 16:30-18:00
Walter.chi 华为云数据治理DTSE技术布道师
想知道数据治理项目中,数据主题域如何合理划分?数据标准及主数据标准如何制定?数仓分层模型如何合理规划?华为云DataArts+DWS助力企业数据治理项目一站式解决方案和应用实践告诉您答案!本期将从数据趋势、数据治理方案、数据治理规划及落地,案例分享四个方面来助力企业数据治理项目合理咨询规划及顺利实施。
去报名
热门标签