- 框架搭建前,先来列几本书提供的框架(目录)。 大致翻了以上几本的感受就是,《数据挖掘导论》的介绍方式跟其他几本书不太一样,总感觉《数据挖掘导论》不好读懂在说什么。。。可能是自己的基础不够?再或许,英文原版会更思路清晰一些? 下面是自己搭建的框架。 决策... 框架搭建前,先来列几本书提供的框架(目录)。 大致翻了以上几本的感受就是,《数据挖掘导论》的介绍方式跟其他几本书不太一样,总感觉《数据挖掘导论》不好读懂在说什么。。。可能是自己的基础不够?再或许,英文原版会更思路清晰一些? 下面是自己搭建的框架。 决策...
- 目录 预备知识 解决分类问题的一般方法 决策树归纳 决策树的工作原理 如何建立决策树 表示属性测试条件的方法 选择最佳划分的度量【需要反复看】 决策树归纳算法 例子:Web机器人检测 决策树归纳的特点 分类任务就是确定对象属于哪个预定义的目标类。本章介绍分类的基本概年,讨论诸如模型... 目录 预备知识 解决分类问题的一般方法 决策树归纳 决策树的工作原理 如何建立决策树 表示属性测试条件的方法 选择最佳划分的度量【需要反复看】 决策树归纳算法 例子:Web机器人检测 决策树归纳的特点 分类任务就是确定对象属于哪个预定义的目标类。本章介绍分类的基本概年,讨论诸如模型...
- 我们在markdown中进行公式书写时,部分会采取引用站外图片的方式,如下。 str1=r''' ### **4.5 多变量决策树** ### **单变量决策树(univariate decision... 我们在markdown中进行公式书写时,部分会采取引用站外图片的方式,如下。 str1=r''' ### **4.5 多变量决策树** ### **单变量决策树(univariate decision...
- 文章目录 I . 决策树模型II . 决策树模型 示例III . 决策树算法列举IV . 决策树算法 示例V . 决策树算法性能要求VI . 决策树模型创建 ( 递归创建决策树 )VII . 决策... 文章目录 I . 决策树模型II . 决策树模型 示例III . 决策树算法列举IV . 决策树算法 示例V . 决策树算法性能要求VI . 决策树模型创建 ( 递归创建决策树 )VII . 决策...
- 文章目录 一、 数据挖掘特点二、 数据挖掘组件化思想三、 决策树模型1、 决策树模型创建2、 树根属性选择 一、 数据挖掘特点 1 . 用于挖掘的数数据源 必须... 文章目录 一、 数据挖掘特点二、 数据挖掘组件化思想三、 决策树模型1、 决策树模型创建2、 树根属性选择 一、 数据挖掘特点 1 . 用于挖掘的数数据源 必须...
- Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。 Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行... Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。 Random Forest(随机森林)算法是通过训练多个决策树,生成模型,然后综合利用多个决策树进行...
- 1.背景 决策书算法是一种逼近离散数值的分类算法,思路比较简单,而且准确率较高。国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数... 1.背景 决策书算法是一种逼近离散数值的分类算法,思路比较简单,而且准确率较高。国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数...
- 一.引入 决策树基本上是每一本机器学习入门书籍必讲的东西,其决策过程和平时我们的思维很相似,所以非常好理解,同时有一堆信息论的东西在里面,也算是一个入门应用,决策树也有回归和分类,但一般来说我们主要讲的是分类,方便理解嘛。 虽然说这是一个很简单的算法,但其实现其实还是有些烦人,因为其feature既有离散的,也有连续的,实现的时候要... 一.引入 决策树基本上是每一本机器学习入门书籍必讲的东西,其决策过程和平时我们的思维很相似,所以非常好理解,同时有一堆信息论的东西在里面,也算是一个入门应用,决策树也有回归和分类,但一般来说我们主要讲的是分类,方便理解嘛。 虽然说这是一个很简单的算法,但其实现其实还是有些烦人,因为其feature既有离散的,也有连续的,实现的时候要...
- 1.背景 接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分。现在我们得到了每个特征值得信息熵增益,我们按照信息熵增益的从大到校的顺序,安排排列为二叉树的节点。数据集和二叉树的图见下。 (二叉树的图是用python的matplotlib库画出来的) ... 1.背景 接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分。现在我们得到了每个特征值得信息熵增益,我们按照信息熵增益的从大到校的顺序,安排排列为二叉树的节点。数据集和二叉树的图见下。 (二叉树的图是用python的matplotlib库画出来的) ...
- 在网上和教材上也看了有很多数据挖掘方面的很多知识,自己也学习很多,就准备把自己学习和别人分享的结合去总结下,以备以后自己回头看,看别人总还是比不上自己写点,及时有些不懂或者是没有必要。 定义:分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别... 在网上和教材上也看了有很多数据挖掘方面的很多知识,自己也学习很多,就准备把自己学习和别人分享的结合去总结下,以备以后自己回头看,看别人总还是比不上自己写点,及时有些不懂或者是没有必要。 定义:分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别...
- 博主说明: 1、原文献非最新文章,只是本人向来对算法比较敏感、感兴趣,便把原文细看了下, 翻译过程中,有参考一些网友翻译的文章,但个人认为,阐述皆不够精准,且都是泛泛而谈, 故此,做了此份翻译,希望,为读者提供一个较权威而详细的文档资料。 2、同时,也可于闲余之际择其一二好好研究、剖析下此数据挖掘领域的十大经典算法。 文... 博主说明: 1、原文献非最新文章,只是本人向来对算法比较敏感、感兴趣,便把原文细看了下, 翻译过程中,有参考一些网友翻译的文章,但个人认为,阐述皆不够精准,且都是泛泛而谈, 故此,做了此份翻译,希望,为读者提供一个较权威而详细的文档资料。 2、同时,也可于闲余之际择其一二好好研究、剖析下此数据挖掘领域的十大经典算法。 文...
- 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的。  ... 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的。  ...
- 在众多分类算法中,决策树作为一种基于有监督学习的层次模型被大量使用,其有一种其他算法难以比拟的优点:可解释性强——通过将学习到的决策树可以很轻易的转换成“如果…那么”形式的规则。但决策树规则的建立依赖于树... 在众多分类算法中,决策树作为一种基于有监督学习的层次模型被大量使用,其有一种其他算法难以比拟的优点:可解释性强——通过将学习到的决策树可以很轻易的转换成“如果…那么”形式的规则。但决策树规则的建立依赖于树...
- 从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法、分类模型选择和结果评价。总共7篇,欢迎关注和交流。 这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后利用决策树算法做一个泰坦尼克号船员生存预测应用。 ... 从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法、分类模型选择和结果评价。总共7篇,欢迎关注和交流。 这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后利用决策树算法做一个泰坦尼克号船员生存预测应用。 ...
- 4.1 概述 决策树——是一种被广泛使用的分类算法。相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置。在实际应用中,对于探测式的知识发现,决策树更加适用。 决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪。 4.2 算法思想 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩... 4.1 概述 决策树——是一种被广泛使用的分类算法。相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置。在实际应用中,对于探测式的知识发现,决策树更加适用。 决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪。 4.2 算法思想 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩...
上滑加载中
推荐直播
-
基于OpenHarmony的计算机学科人才培养经验分享
2024/11/28 周四 19:00-21:00
华为开发者布道师、兰州大学信息科学与工程学院教授周睿
老师们、同学们,这里有不容错过的精彩! 想了解计算机类人才培养存在哪些挑战?想知道OpenHarmony如何应用于人才培养?本次直播,为你分享基于它的科创实践、专业社团实践和教学实践途径,培养学术型、应用型和复合型精英人才。快来报名,开启提升之旅!
正在直播 -
全面解析华为云EI-API服务:理论基础与实践应用指南
2024/11/29 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播给大家带来的是理论与实践结合的华为云EI-API的服务介绍。从“主要功能,应用场景,实践案例,调用流程”四个维度来深入解析“语音交互API,文字识别API,自然语言处理API,图像识别API及图像搜索API”五大场景下API服务,同时结合实验,来加深开发者对API服务理解。
去报名 -
华为ICT大赛2024-2025 编程赛-鸿蒙技术赋能
2024/12/01 周日 14:00-18:00
赵小刚 武汉大学计算机学院软件工程系 副教授
本期直播将与您一起交流学习OpenHarmony 物联网应用开发,助力您在华为ICT大赛2024-2025编程赛中取得好成绩。
即将直播
热门标签