- 1 简介ent 是一个简单但功能强大的 Go 实体框架,使其易于构建 维护具有大数据模型的应用程序,并遵循以下原则:轻松地将数据库架构建模为图形结构。将 schema 定义为编程 Go 代码。基于代码生成的静态类型。数据库查询和图形遍历很容易编写。使用 Go 模板轻松扩展和自定义。 2 Ent 与 GORM 对比分析主要区别 特性 Ent (Entity Framework) G... 1 简介ent 是一个简单但功能强大的 Go 实体框架,使其易于构建 维护具有大数据模型的应用程序,并遵循以下原则:轻松地将数据库架构建模为图形结构。将 schema 定义为编程 Go 代码。基于代码生成的静态类型。数据库查询和图形遍历很容易编写。使用 Go 模板轻松扩展和自定义。 2 Ent 与 GORM 对比分析主要区别 特性 Ent (Entity Framework) G...
- 1 简介作为最流行的经典机器学习算法之一,决策树的可解释性比其他算法更直观。CART算法经常用于构建决策树模型,它可能也是最常用的算法。当我们将 Scikit-Learn 库用于决策树分类器时,它是默认算法。用 scikit-learn 构建一个 CART 决策树模型;计算每个叶节点上“流失”类别的概率;根据概率阈值为每个叶节点打上模态标签: □ churn(必然流失,概率 > 0.9)... 1 简介作为最流行的经典机器学习算法之一,决策树的可解释性比其他算法更直观。CART算法经常用于构建决策树模型,它可能也是最常用的算法。当我们将 Scikit-Learn 库用于决策树分类器时,它是默认算法。用 scikit-learn 构建一个 CART 决策树模型;计算每个叶节点上“流失”类别的概率;根据概率阈值为每个叶节点打上模态标签: □ churn(必然流失,概率 > 0.9)...
- 1 简介模态逻辑(Modal Logic)是一种对“不确定性”、“可能性”、“必然性”等语义进行形式化推理的逻辑系统,它已经被广泛引入到现代人工智能(AI)、自然语言处理、知识表示与自动推理、博弈论、以及机器学习等领域。在数据科学中,模态逻辑与决策树(如 CART)结合使用,可以将“确定性计算”与“不确定性建模”融合,用于推理、决策支持或局部可信度评估。 2、模态逻辑的核心思想和计算目的基... 1 简介模态逻辑(Modal Logic)是一种对“不确定性”、“可能性”、“必然性”等语义进行形式化推理的逻辑系统,它已经被广泛引入到现代人工智能(AI)、自然语言处理、知识表示与自动推理、博弈论、以及机器学习等领域。在数据科学中,模态逻辑与决策树(如 CART)结合使用,可以将“确定性计算”与“不确定性建模”融合,用于推理、决策支持或局部可信度评估。 2、模态逻辑的核心思想和计算目的基...
- 标签(空格分隔): 数据分析 CART 创建决策树做分类 # encoding=utf-8 from sklearn.model_selection import train_test_split... 标签(空格分隔): 数据分析 CART 创建决策树做分类 # encoding=utf-8 from sklearn.model_selection import train_test_split...
- 在使用Graphviz进行决策树可视化的过程中遇到一个问题:export_graphviz似乎不支持中文,当feature_name包含中文时,导出的决策树pdf中文都是乱码。查了一些资料,说是要把源文件... 在使用Graphviz进行决策树可视化的过程中遇到一个问题:export_graphviz似乎不支持中文,当feature_name包含中文时,导出的决策树pdf中文都是乱码。查了一些资料,说是要把源文件...
- “ 上篇内容介绍的是线性回归和逻辑回归模型,输入输出是连续值,分类模型的输出是一个有限集合,本篇介绍决策分类树算法” 决策树算法理解 决策树是直观运用概率分析的树形分类器,是很常用的分类方法,属于监管学习,决策树分类过程是从根节点开始,根据特征属性值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。 比如说买... “ 上篇内容介绍的是线性回归和逻辑回归模型,输入输出是连续值,分类模型的输出是一个有限集合,本篇介绍决策分类树算法” 决策树算法理解 决策树是直观运用概率分析的树形分类器,是很常用的分类方法,属于监管学习,决策树分类过程是从根节点开始,根据特征属性值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。 比如说买...
- 目录 简介说明4.14.24.3结语 简介 Hello! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|... 目录 简介说明4.14.24.3结语 简介 Hello! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|...
- 文章目录 一、简述二、大原则三、十大常用算法概述3.1 线性回归3.2 逻辑回归3.3 线性判别分析3.4 决策树3.5 朴素贝叶斯3.6 K-最近邻3.7 学习向量量化3.8 支持向量机3.9 ... 文章目录 一、简述二、大原则三、十大常用算法概述3.1 线性回归3.2 逻辑回归3.3 线性判别分析3.4 决策树3.5 朴素贝叶斯3.6 K-最近邻3.7 学习向量量化3.8 支持向量机3.9 ...
- 文章目录 一、什么是决策树? 二、决策树学习的 3 个步骤 2.1 特征选择 2.2 决策树生成 2... 文章目录 一、什么是决策树? 二、决策树学习的 3 个步骤 2.1 特征选择 2.2 决策树生成 2...
- 文章目录 致谢 7 决策树7.1 认识决策树7.2 决策树原理7.3 信息论7.3.1 信息熵7.3.1.1 熵7.3.1.2 信息7.3.1.3 信息熵 7.3.2 信息增益 ... 文章目录 致谢 7 决策树7.1 认识决策树7.2 决策树原理7.3 信息论7.3.1 信息熵7.3.1.1 熵7.3.1.2 信息7.3.1.3 信息熵 7.3.2 信息增益 ...
- 要求 要求:天气因素有温度、湿度和刮风等,通过给出数据,使用决策树算法学习分类,输出一个人是运动和不运动与天气之间的规则树。 训练集和测试集可以自由定义,另外需要对温度和湿度进行概化,将数值变为概括性... 要求 要求:天气因素有温度、湿度和刮风等,通过给出数据,使用决策树算法学习分类,输出一个人是运动和不运动与天气之间的规则树。 训练集和测试集可以自由定义,另外需要对温度和湿度进行概化,将数值变为概括性...
- 前言 决策树是机器学习中的一种常用算法。相关数学理论我也曾在数学建模专栏中数学建模学习笔记(二十五)决策树 介绍过,本篇博文不注重相关数学原理,主要注重使用sklearn实现分类树的效果。 参考课程见【... 前言 决策树是机器学习中的一种常用算法。相关数学理论我也曾在数学建模专栏中数学建模学习笔记(二十五)决策树 介绍过,本篇博文不注重相关数学原理,主要注重使用sklearn实现分类树的效果。 参考课程见【...
- 文章目录 一、什么是决策树? 二、决策树学习的 3 个步骤 2.1 特征选择 2.2 决策树生成 2... 文章目录 一、什么是决策树? 二、决策树学习的 3 个步骤 2.1 特征选择 2.2 决策树生成 2...
- 再数学建模学习(72)这一篇,我们尝试过用隔离森林对大量数据集的异常值检测,这一篇我们简单的来学习使用它,如果你那一篇没看懂,可以先看这一篇,可能会轻松很多。 隔离森林介绍 隔离森林是一种用于异常值检... 再数学建模学习(72)这一篇,我们尝试过用隔离森林对大量数据集的异常值检测,这一篇我们简单的来学习使用它,如果你那一篇没看懂,可以先看这一篇,可能会轻松很多。 隔离森林介绍 隔离森林是一种用于异常值检...
- 文章目录 文章参考ID3决策树1、测试数据集2、信息熵3、信息增益4、决策树的构建5、使用决策树进行决策6、决策树源码7、决策树可视化 未来可期 文章参考 https:/... 文章目录 文章参考ID3决策树1、测试数据集2、信息熵3、信息增益4、决策树的构建5、使用决策树进行决策6、决策树源码7、决策树可视化 未来可期 文章参考 https:/...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签