• [技术干货] 华为云物联网平台的C#应用基础开发教程(基本接口调用)
    大家好,之前先后发布了华为云IOT的Java、Android、微信小程序的华为云物联网平台的上位机应用开发教程,基本介绍了不同环境下的华为云物联网平台的接口调用方法,最近接到了两个小伙伴咨询华为云物联网平台的C#应用开发问题,其实本质都是一样的,像查询设备属性下发命令等功能在应用侧开发都是以Http的GET或POST请求完成接口调用的形式,仔细查看代码的话其实与Android那期的开发教程有很大的相似之处,本期就带大家使用Visual Studio完成C#的窗体应用开发完成华为云物联网平台的基本接口调用。一、新建工程与核心类1. 新建工程2. 新建类(用于完成核心功能)二、认证鉴权1. 文档介绍根据华为云官方提供的帮助文档,我们可以知道,在调用接口前,我们需要完成认证鉴权,我们本次教程采用的是Token认证(帮助文档参考链接:cid:link_0)上图的最后一行,我们可以看到,官方给出了一个调用IAM用户Token(使用密码)的帮助信息,所我们需要准备如下信息(cid:link_3):在浏览上图教程中,我们可以看到我们需要 IAM用户所属帐号名、IAM用户名、IAM用户密码、项目名称所属(项目ID),然后我们将准备的参数填入下述的JSON数据体,并且在完成请求解析出接口返回的响应消息头中“X-Subject-Token”值,其值就是需要获取的用户Token:String postbody="{"+"""+"auth"+"""+": {"+"""+"identity"+"""+": {"+"""+"methods"+"""+": ["+"""+"password"+"""+"],"+"""+"password"+"""+": {"+"""+"user"+"""+":{"+"""+"domain": {"name": "********"},"name": "********","password": "********"}}},"scope": {"project": {"name": "cn-north-4"}}}}";String strurl="https://iam.cn-north-4.myhuaweicloud.com"+"/v3/auth/tokens?nocatalog=false";2.获取token的方法:引入命名空间:using System.Net; String HUAWEINAME = "xxxxxxx"; //华为账号名 String IAMINAME = "xxxxxxx"; //IAM账户名 String IAMPASSWORD = "xxxxxxx"; //IAM账户密码 String project_id = "xxxxxxx"; //产品ID String device_id = "xxxxxxx"; //设备ID String service_id ="xxxxxxx"; //服务ID String commands = "xxxxxxx"; //命令名称 String token= "xxxxxxx"; //获取的token /*函数功能:获取token *返回值:token字符串 *参数: 无 * USER:中华小能能 * */public string GetToken(){ Console.WriteLine("正在获取token..."); string URL = "https://iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens "; String data = "{" + """ + "auth" + """ + ": {" + """ + "identity" + """ + ": {" + """ + "methods" + """ + ": [" + """ + "password" + """ + "]," + """ + "password" + """ + ": {" + """ + "user" + """ + ":{" + """ + "domain": {"name": "" + HUAWEINAME + ""},"name": "" + IAMINAME + "","password": "" + IAMPASSWORD + ""}}},"scope": {"project": {"name": "cn-north-4"}}}}"; Encoding encoding = Encoding.Default; HttpWebRequest request = (HttpWebRequest)WebRequest.Create(URL); request.Method = "post"; request.ContentType = "application/json"; byte[] buffer = encoding.GetBytes(data); request.ContentLength = buffer.Length; request.GetRequestStream().Write(buffer, 0, buffer.Length); HttpWebResponse response = (HttpWebResponse)request.GetResponse(); Console.WriteLine(response); token = response.GetResponseHeader("X-Subject-Token"); Console.WriteLine("Token:" + token); return token;}3.添加调用:HuaweiIOT dev1 = new HuaweiIOT();dev1.GetToken();4.运行:【补充】由于我们获取的TOKEN是有24小时有效期的,大家可以在获取token后去生成token.txt文件,当过期时再重新获取,本教程不在次延伸扩展。四、获取设备影子解析设备属性1. 查看文档首先我们查看华为云官方提供的帮助文档(cid:link_1)我们需要的URI可知我们的请求URL:"https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/"+ project_id + "/devices/"+ device_id + "/shadow";响应样例:2.添加JSON程序包3.引入命名空间using System.IO;using Newtonsoft.Json.Linq;4.具体方法:/*函数功能:通过设备影子获取设备属性*返回值:无*参数: 无* USER:中华小能能* */public void GetProByShadow(){ Console.WriteLine("正在获取设备影子..."); String jsonShadow = ""; String URL = "https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/" + project_id + "/devices/" + device_id + "/shadow"; URL = String.Format(URL, project_id, device_id); Console.WriteLine("URL:" + URL); HttpWebRequest request = (HttpWebRequest)WebRequest.Create(URL); request.Method = "GET"; request.ContentType = "application/json"; if (token == "") GetToken(); request.Headers.Add("X-Auth-Token", token); HttpWebResponse response = (HttpWebResponse)request.GetResponse(); Stream responseStream = response.GetResponseStream(); StreamReader streamReader = new StreamReader(responseStream, Encoding.UTF8); jsonShadow = streamReader.ReadToEnd(); streamReader.Close(); responseStream.Close(); Console.WriteLine("shadow:" + jsonShadow); JObject arr = JObject.Parse(jsonShadow); Console.WriteLine(arr); String shadowstr = ""; if (arr.ContainsKey("shadow") == true) { shadowstr = arr["shadow"][0]["reported"]["properties"].ToString(); Console.WriteLine(shadowstr); } properties mydev = new properties(); JObject pro = JObject.Parse(shadowstr); mydev.temp = pro["temp"].ToString(); mydev.humi = pro["humi"].ToString(); mydev.light = pro["light"].ToString(); Console.WriteLine("temp:" + mydev.temp + ",humi:" + mydev.humi + ",light:" + mydev.light); } //设备属性类别与属性值 public class properties { public string temp { get; set; } public string humi { get; set; } public string light { get; set; } }我们在调用接口后返回的json数据具体内容各不相同,但整体格式是一样的,我上述程序对应的格式如下,大家根据自己的实际JSON数据进行解析:添加调用并运行:dev1.GetProByShadow();五、设备命令的下发老样子,我们依旧查看华为云帮助文档(cid:link_2)我们得到的信息:同步命令下发需要设备在线URI为:strurl="https://iotda.cn-north-4.myhuaweicloud.com"+"/v5/iot/%s/devices/%s/commands";消息体是:String body="{"paras":{""+"*****"+"""+":"+"*****"+"},"service_id":"***** ","command_name":"*****"}";我们写一下实现方法:/*函数功能:向设备下发同步命令(开灯:led=1)*返回值:无*参数: 无* USER:中华小能能* */public void SetCommand(){ Console.WriteLine("下发命令,led:1"); string URL = "https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/" + project_id + "/devices/" + device_id + "/commands"; //开灯命令 String bodyData = "{"paras":{"" + "led" + """ + ":" + "1" + "},"service_id":"Dev_data","command_name":"Control"}"; Encoding encoding = Encoding.Default; HttpWebRequest request = (HttpWebRequest)WebRequest.Create(URL); request.Method = "POST"; request.ContentType = "application/json"; if (token == "") GetToken(); request.Headers.Add("X-Auth-Token", token); byte[] buffer = encoding.GetBytes(bodyData); request.ContentLength = buffer.Length; request.GetRequestStream().Write(buffer, 0, buffer.Length);}添加调用并运行设备响应命令需要在设备接收到命令后及时完成上报,功能由设备完成,不在此扩展讲解,我使用MQTT模拟响应后,在设备的消息跟踪可看到下面的效果,如果设备没有及时响应,不影响命令发送,但会报告同步命令响应异常的警告, 注意:同步命令需要在设备在线时才会发送成功,具体查看接口文档的错误码介绍.通过上述两个接口的调用,相信大家已经掌握的基本的接口使用方法,所有代码已经在上面贴出,如果需要上述工程文件,私信发你,如果在开发过程中遇到问题,欢迎大家在评论区留言提出,看到后会及时回复。
  • [技术知识] 资深老师傅总结的管道振动减振措施,赶紧收好了!
    管道振动会使管道、支架甚至混凝土基础松动或损坏,此时急于恢复损坏的部位并非治本之策。从源头上解决系统振动问题才是压缩机组平稳运行的关键。管道振动有的是由频率共振引起的,有的则是由气流脉动引起的,只有找出管道系统振动的内在原因,才能恰当地选择消减管道系统振动的有效方法。01 消除频率共振为防止管道系统发生共振,在选择管道两个支座间的距离时,应使管段的固有频率比激励基频高30%或低30%。对于复杂的管道系统,固有频率很多,而且间隔很小,很难使管系脱离各阶共振区,但是高阶共振振幅因为幅值较小,故不必考虑,只要避开管系基频或低阶共振频率就可以了。常用的改变管道固有频率、消除管道共振的方法有以下几种。1)改变管道参数。缩短管道长度或扩大管道直径,可以使管道系统的刚度、固有频率及共振的简谐阶次得到提高,从而避免共振。这适用于处于设计阶段的压缩机装置的管道系统。2)改变支承刚度。支承刚度大小是影响管道固有频率的重要因素。支承刚度越高,管系的固有频率值越高,反之固有频率值越低。所以支承的结构应做成刚度大而质量要小,管道和支承间力求采用刚性连接。一般可采用增加支承点、加固支承或在管路上附加质量的方法,改变管道的固有频率,使其远离激振频率。应注意的是,采用增加支承的方法只适用于管道振动是由共振引起的情况,并且使用时要对管道进行应力校核。否则盲目采用的话,可能会增加管道中的应力,加速管道的破裂。支承及管夹的设计安装应按照相关标准执行。下面列出支承安装时应注意的一些事项。1)水平敷设在支架上的有隔热层的管道应设管托,当管道热胀量超过100mm时,应选用加长管托。2)不得用高温管道、低温管道、振动管道和蒸汽管道支承其他管道。3)支吊架边缘与管道焊缝的间距不应小于50mm,与需要热处理的管道焊缝的间距不应小于100mm。4)当支吊架或管托必须与合金钢管道直接焊接时,其连接构件的材质应与管道材质相同。02 消减气流脉动大多数管道振动问题都是由气流脉动引起的。关于如何消减气流脉动,经过一系列理论研究及工程实践,人们已经总结了一些方法措施。有些措施在压缩机设计阶段就已经考虑在内,如合理布置气缸,适当配置各级压力比;压缩机的入口、出口设置吸气、排气缓冲罐;有些措施也可以在生产现场根据振动分析结论,采取因地制宜的措施,如在管道中设置声学滤波器、孔板、改变管道长度以及改变管路支承方式等。1)合理布置气缸,适当配置各级压力比;2)设置缓冲器;3)设置声学消振器;4)设置孔板消振;03 转移、耗减振动能量工程上也常在管道系统中采用减振元件,来转移、耗散局部振动能量,达到降低某段管道振动振幅的目的,如在支承上使用石棉胶板或其它材料制成的减振衬垫,以及阻止振动发展的制动器,或者在管道上紧固动力减振器、管道阻尼器等。
  • [问题求助] 【IOT产品】【设备接入功能】平台设置设备属性接口老是报topic格式不正确,是什么问题?
    【功能模块】设备接入模块,设备在线调式【操作步骤&问题现象】1、在MQTTX客户端新建一个连接,并发送主题消息2、在线调试,查看日志,提示topic格式有问题【截图信息】【日志信息】(可选,上传日志内容或者附件)
  • [技术知识] 离心泵叶轮的基本知识,你掌握了吗?
    叶轮是叶片式流体机械中对流体传递能量的唯一部件,通过它将原动机的机械能转变为流体的动能和压能。泵的流量、扬程和效率都与叶轮的形状、尺寸及表面粗糙度有密切关系。对叶轮的主要要求是:每个单级叶轮能使液体获得最大的理论能头或压力增值;由叶轮组成的级具有较高的效率,且性能曲线的稳定工况区较宽;具有较高的强度,结构简单,制造工艺性好。离心泵叶轮从外形上可分为闭式、半开式和开式三种。闭式叶轮在叶片的两端面有轮盖及轮盘,叶道截面是封闭的,如图1(a)所示,这种叶轮水力效率高,但制造略复杂,适用于高扬程泵,输送较洁净的液体;半开式叶轮只有轮盘而无前盖板,流道是半开启的;如图1(b)所示,适合输送含有杂质的液体,泵的水力效率较低;开式叶轮既无前盖板又无轮盘后盖,流道完全敞开,如图1(c)所示,常用来输送浆状黏稠介质。离心泵叶轮还分单吸和双吸两种,双吸叶轮如图1(d)所示,适用于流量较大的情况,其抗汽蚀性能较好,而且基本上可以消除轴向力。图1 离心泵叶轮型式离心泵的叶轮大多数为后弯叶片型叶轮,后弯叶片型叶轮的叶片数一般为6~12片。通常叶片数增加可改变液体流动情况,能相应提高泵的扬程,但也会使液体在泵内的摩擦损失增加,效率降低,容易发生汽蚀;叶片数过少,每个叶片负荷增大,对液体的导流作用减小,也会使泵的扬程下降。叶片弯曲型式如图1-33所示。图2 叶片弯曲型式在相同的叶轮结构尺寸条件下,前弯叶片型叶轮具有较大的叶片弯曲度和较短的叶道,叶道的截面积增加较快,如图3所示,因此流体易产生边界层分离,故效率较低,而后弯叶片型叶轮则相反,效率较高,径向叶片型叶轮介于两者之间。图3 前、后弯叶片型叶轮的叶道βA1——叶片进口安装角;βA2——叶片出口安装角
  • [问题求助] 物联网平台的IoTDA数据接入管道的工作台无法停止作业,请问如何使之停止工作
    【功能模块】【操作步骤&问题现象】1、点击存储管理,点击编辑创建数据存储,发现创建后无法删除。2、进入数据存储后,在点击数据管道,发现管道无法停止工作。【截图信息】【日志信息】(可选,上传日志内容或者附件)
  • [案例分享] 某炼铁厂卷扬机齿轮箱磨损故障诊断案例
    卷扬机,用卷筒缠绕钢丝绳或链条提升或牵引重物的轻小型起重设备,又称绞车。卷扬机可以垂直提升、水平或倾斜拽引重物。卷扬机分为手动卷扬机和电动卷扬机两种。现在以电动卷扬机为主,可单独使用,也可作起重、筑路和矿井提升等机械中的组成部件,因操作简单、绕绳量大、移置方便而广泛应用。今天因大师给大家分享的内容是某钢铁公司炼铁厂卷扬机故障诊断案例。01 案例背景该钢铁公司与因联科技于2021年9月开始达成合作,使用因联iPHM设备健康智能维护云平台监测炼铁厂机泵的运行状态,及时发现设备故障并发出预警,避免设备因突发性故障引起的非计划停机,保障工厂生产正常运行。该卷扬机于2022年3月由iPHM系统监测到异常情况,触发二级报警,诊断师分析为第二级齿轮存在磨损。由于振动幅值稳定和生产任务原因,工厂决定使用iPHM系统密切监测该卷扬机的运行状态,随时掌握设备运行信息。02 故障诊断以下是详细分析呈现。1#卷扬机形貌图信息:图1 卷扬机形貌图从图2减速箱各点振动趋势图可以看出,1#卷扬机振动幅值明显比2#偏大,相差达两倍左右。图2 减速箱各点振动趋势图2轴驱动端V速度频谱图(图3)显示,速度谱存在93.594hz及谐波,且底噪较高,和同类型设备对比,振动幅值明显偏大。图3 2轴驱动端V速度频谱图综上,频谱图主要存在93Hz左右及其高次谐波,且底噪较高,分析为减速箱第二级齿轮存在故障。03 拆机验证2022年4月10日,工厂停机检修,下线齿轮箱开盖检查发现,2轴和3轴齿轮存在点蚀剥落。情况与诊断结论一致,检修后更换齿轮箱。图4 现场检修图检修后重新开机,齿轮箱各测点速度与加速度频谱图中的93Hz左右的谐波消失,且底噪也基本消失,主要成分为转频谐波及高速轴啮合频率,振动值恢复到正常水平。图5 检修前后2轴速度频谱图
  • [技术知识] 转子为什么会产生裂纹?看完你就懂了
    由于转子裂纹的危险性,迫切需要进行有效地监测,以尽可能早地发现事故征兆,至少在发展为灾难性事故前能够觉察。目前直接确定裂纹的方法如超声波、红外线、磁力探伤等仅能够在停机条件下检测,而不能提供运行状态下的测量。今天因大师给大家分享的内容是转子裂纹的原因。引起转子裂纹的原因包括高频疲劳、低频疲劳、蠕变和应力腐蚀。它们首先与转子运转的机械状态有关,另外还受环境的影响,主要是热参数和工作介质中含有腐蚀性的化学物质的影响。1.交变应力交变应力可以使材料疲劳断裂。转子上存在两种类型的交变应力:1)横向振动横向振动引起的弯曲变形使转子出现应力。此时的应力有两种:一种是非交变的,另一种是交变的。基频(1X)振动只产生非交变的应力,而其他频率的振动将产生交变应力:交变应力的频率=振动频率-转速频率。2)扭转振动正常运转时,旋转机械的转子产生稳定的扭转应力,但在故障状态时(甩负荷、短路、非同步并网等),转子将产生交变扭矩,从而出现交变的剪切应力。2.应力集中通常促使裂纹扩展的最重要的应力集中部位是转子材料的缺陷处,如夹渣及其他非金属夹杂物处。例如钢的氢脆就削弱了晶粒的连接并促使空位产生,其作用最终与增大应力一样。应力集中经常发生在转子被削弱的地方,如轴的阶梯部位、键槽、孔(叶轮的平衡孔、转子内孔)、螺纹、装配处的间隙等。所有紧固在转子上的零件都在紧固表面形成一个潜在的应力集中区域。例如:由于装配不好使圆盘与转子定位轴肩之间存在的间隙会产生类似于沟槽的集中应力效应,当机器运转时,一些装配部位可能发生松动,成为裂纹的激发源;转子的锥度配合或热装表面通常会产生应力集中,特别是在较高的温度梯度时;发电机转子极易产生沟槽型应力集中效应,在松动的绕组或绝缘垫片的共同作用下,槽楔成为一个潜在的裂纹激发源。3.环境因素转子的内孔、键槽、沟槽、装配处的间隙和尖角不仅产生应力集中,还特别容易腐蚀。盐、硫酸盐、蒸汽、水或其他工作介质中的酸性物质对孔槽状部位具有特别的腐蚀性。当水蒸气的纯度较差时,时间很短也能形成激发裂纹的环境。时间一长,腐蚀就会使材料劣化,极易促进裂纹的形成。热状态是裂纹形成和开展的另一个重要因素。例如:过高的温度会使蠕变加速,这将在金属中形成晶间空位,从而产生裂纹;温度变化率过大也会产生大应力,这是大量的非均匀膨胀所致。在上述情况下,热应力都促使轴的状态变化,促进裂纹扩展。
  • [技术知识] 转子的活动部件知识详解,全是干货!
    转子存在活动部件时,相当于一个可移动的不平衡量。今天主要讨论活动部件引起振动的机理,提出如何通过振动分析诊断这种故障。1 转子上的活动部件转子上的部件如果在圆周方向失去约束,就可能沿圆周位移。这样的部件包括中心孔堵头、平衡块、发电机端部线圈垫块。1)中心孔堵头转子中心孔两端各有一个堵头,用来防止运行过程中油汽和水汽进入孔内。堵头的质量一般在2kg以上,位于转子的转动中心,受离心力的合力为零。如果联轴器的端面是紧贴的,堵头即便松动也不可能脱落。但有的联轴器的端面存在一定的退让间隙(内腔),堵头就有可能落入其中。在盘车过程和高速运行中都有可能出现这种情况。机组在大修时通常要打开堵头检查中心孔。堵头与中心孔是紧配合,堵头的直径应比中心孔略大一些。装配时先将堵头侵入液氢中,充分冷却后打入中心孔,令两者有一定的紧力。现场不具备这样的条件,一般是将堵头直接打入,这样就容易造成堵头脱落。2)平衡块如果平衡块松动,在盘车或低速运行时其可能沿平衡槽位移。3)线圈垫块发电机转子的端部线圈由胶木垫块固定,它的质量一般在1kg以上。垫块如果松动,由于受护环的约束不可能飞脱,但有可能沿圆周位移。2 振动机理上述活动部件即使松脱,也并不意味着在任何情况下该部件都可以移动。在低转速的情况下,它是可以移动的;而在高转速的情况下,由于巨大的离心力,会使其附着在转子的某个部位,并将随转子同步转动。活动部件与转子同步转动的最低转速为式中g——重力加速度, g=9810mm/s2;r——活动部件的转动半径;μ——接触面的摩擦系数。由于μ2≤1,所以上式可以近似表示为当转速w<wmin时,部件不能随转子同步转动,将滑动或滚动;当转速w>wmin时,部件停留在某一位置并随转子同步转动。这个位置是随机的,每次开机都不相同,相当于角度变化的不平衡量。3 诊断1)初步诊断转子上存在活动部件时,如果仅仅依据一次启动过程的测量数据,很容易判断为不平衡。但是如果平衡过程出现以下异常现象,应该将活动部件作为一个疑点排查:(a)多次平衡,振动无法降低。(b)平衡计算的预期值与实际值差别很大。(c)各次平衡得到的影响系数差别很大。(d)各次平衡加重的角度差别很大。从已有的案例看,这类故障以中心孔堵头落入联轴器内腔的情况居多。如果存在这方面的怀疑,还应该注意到转子的结构特点。2)详细诊断(a)振动为基频。(b)转速试验。将机组从盘车状态(或很低的转速)升速至3000r/min。反复启动两次以上,比较同一转速下的振动。如果振幅或相位的重现性差,则属于活动部件的特征。需要注意的是:①应该比较同一转速下的振动;②应该在高转速(2000~3000r/min)进行比较,因为在低转速下振动的灵敏度差,对不平衡变化的反映不灵敏;③由于活动部件位置的随机性,也有可能在两次启动过程中位置接近,因此转速试验应该多做几次。(c)矢量分析。活动部件沿圆周方向的位移将引起相位的变化。如果转子的原始不平衡量很小可以忽略,则每次启动后振动的大小不变,只是相位变化。(d)实时记录。在运行过程中,当中心孔堵头落入联轴器内腔时,堵头与内腔要经过一段撞击和相对运动后才能稳定在内腔的某一位置,因此振动存在一个变化过程。这与断叶片不同,后者表现为振动瞬间增大。
  • [问题求助] 小熊派WIFI8266连接IOTDA
    【功能模块】跟着资料一步一步走但就是上不了云,串口显示一直无法握手成功【操作步骤&问题现象】1、按照图示步骤进行2、无法实现设备激活【截图信息】【日志信息】(可选,上传日志内容或者附件)
  • [技术知识] 干货推送!转子不平衡的振动特征与振动敏感参数
    转子不平衡的诊断依据主要如表1和表2所示。表1 转子不平衡的振动特征表2 转子不平衡的振动敏感参数对于原始不平衡、渐变不平衡和突发性不平衡这3种形式,其共同点较多,但可以按振动趋势不同对其进行甄别。原始不平衡:在运行初期机组的振动就处于较高的水平,如图1(a)所示;渐变不平衡:运行初期机组振动较低,随着时间的推移,振动值逐步升高,如图1(b)所示;突发不平衡:振动值突然升高,然后稳定在一个较高的水平,如图1(c)所示。图1 几种不同性质的不平衡的振幅变化趋势
  • [问题求助] 【Iot设备接入】【web在线开发】iotstudio下架后的应用开发功能寻求替代
    【功能模块】iot设备接入【操作步骤&问题现象】跟着社区的资料做,发现iotstudio下架了,web在线开发也下架了,翻阅帖子发现可以用oceanconnect替代,结果oceanconnect也已经下架了,还有其他可以根据设备回报的数据自动下发命令的替代吗 例如:智慧农业里的补光灯 那样的自动下发命令【截图信息】
  • [技术干货] 梅科尔工作室--郭晨阳
    首先进行的是软件安装,搭载编译环境;具体参考的是B站教程进行搭建;具体如下:;有两种搭建环境的方法,十分钟上手简单版以及复杂版的方式,根据自己的学习需求以及个人能力进行选择。具体会用到的软件如下;  代码编译工具;虚拟机环境连接虚拟机;进行实操时记得要把raidrive里的只读给点掉,先断开再连接;才可以编译文件进行源码的编写以及更改;HI-Burn烧录工具—将编译代码烧录到开发板中;以上就是整个实操过程中需要用到的软件,以及需要注意的事项。
  • [技术知识] 轴流压缩机的主要性能参数与特性曲线
    01 轴流压缩机的主要性能参数轴流压缩机的主要性能参数有流量、压比、转速、功率与效率。压缩机的流量可用容积流量Q(m3/s)或质量流量G(kg/s)表示,在标准状态或给定的进气状态下二者可以相互换算。压缩机的压比ε=pd/ps,这里pd和ps分别表示压缩机出口与进口的气体压力。通常,在压缩机的进气侧还装有空气过滤器等设备,因而压缩机的进气压力ps总会比外界大气压力pa略低一些。多级轴流压缩机的总压比等于各级压比的乘积,即ε=ε1•ε2•ε3…•εn。压缩机的转速n一般用r/min表示。压缩机的功率是指驱动压缩机所需要的轴功率P,其单位为kW。压缩机的效率有绝热效率ηab、多变效率ηpol、机械效率ηm等。轴流压缩机的每一台产品都用铭牌标明其主要性能参数以及所压缩的工质和进气条件。02 轴流压缩机的特性曲线与工况调节1)特性曲线轴流压缩机与离心压缩机一样,其主要特性参数为压缩机压比ε、效率η与功率P。它们可由压缩机的进口温度T1、进口压力ps、转速n、质量流量G或容积流量Q等独立参数来确定。通常把轴流压缩机的主要性能参数ε、η与决定工作状况的独立参数之间的关系称为压缩机的特性,常用特性曲线表示,即在一定的进口温度T1和进口压力ps下,绘出不同转速n时的压缩机压比ε、效率η与流量的关系曲线,即为压缩机的特性曲线或性能曲线。特性曲线反映了压缩机的气动参数、热力参数、结构参数与结构形式等因素的综合关系。利用特性曲线可以方便地了解轴流压缩机的基础性能,判断稳定工况范围及不稳定工况位置,确保设计工况条件,选择满足要求的压缩机。实际应用中,为了方便,常将ε=f1(n,Q)曲线与η=f2(n,Q)曲线画在同一张图上,绘制方法如图1所示。这种给定进口条件下的特性曲线称为正常特性曲线,如果进口条件改变,则正常特性曲线也随之改变。 图1 轴流压缩机的特性曲线区与离心压缩机一样,当环境条件变化时,会影响压缩机的特性曲线,为了使轴流压缩机特性曲线不受进气条件变化的影响,在各种不同的进气条件下,都能够直接应用轴流压缩机的同一特性曲线,可以应用相似原理,利用相似参数来绘制轴流压缩机的特性曲线,这就是轴流压缩机的通用特性曲线,如图2所示。 图2 轴流压缩机的通用特性曲线2)性能特点由通用特性曲线图可以看出,轴流压缩机具有如下性能特点:a)在一定的转速下,随着流量增大,压比下降;流量减小,压比增大。b)随着转速的增大,压比显著提高,特性曲线也变得更陡峭,稳定工作区变窄,并向大流量区移动。c)当转速一定,在某一进口流量下,压缩机效率有最大值,其效率曲线有最高位置。d)压缩机级数越多,压比越高,变工况时性能变化就更为敏感,则特性曲线就越陡,稳定工作区也越窄。e)存在喘振与阻塞等不稳定工况。轴流压缩机的特性曲线与离心压缩机有许多相似的特点,但由于轴流压缩机与离心压缩机的结构形式有很大的区别,它们在特性曲线上也存在着一些差异,并有各自的特点。图3为两台进口流量变化范围大致相同的轴流压缩机和离心压缩机的特性曲线图。 图3 轴流压缩机与离心压缩机变转速时的性能曲线比较从图3中可看出两种压缩机特性曲线的差异:a)轴流压缩机效率比较高。这是由于在轴流压缩机中气体直接从一级进入下一级,流道短。b)轴流压缩机级压比低。因为轴流压缩机利用叶栅流道扩压原理来提高气体压力,而离心压缩机则主要依靠离心力的作用来提高气体压力,故轴流压缩机的级压比低于离心压缩机。c)轴流压缩机稳定工况范围较窄。这是因为轴流压缩机叶栅对气流冲角的变化比较敏感,故其特性曲线与离心压缩机相比较陡,稳定工作区较窄。d)轴流压缩机的输入功率一般随流量增加而减小。
  • [案例分享] 【案例分享】某石化公司水厂一立式悬臂泵机械密封故障诊断案例
    机械密封是一种旋转机械的轴封装置,主要用于离心泵、离心机、反应釜和压缩机等设备。机械密封又叫端面密封,是由至少一对垂直于旋转轴线的端面在流体压力和补偿机构弹力(或磁力)的作用以及辅助密封的配合下保持贴合并相对滑动而构成的防止流体泄漏的装置。今天因大师给大家分享的是国内某石化公司一个水厂的立式悬臂泵的机械密封故障诊断案例。01 设备告警该石化公司与因联科技合作由来已久,其水厂依托因联iPHM设备健康智能维护云平台,实时监测厂内机泵、风机、压缩机等关键机组的运行情况,及时发现设备故障并预警,避免设备因突发性故障引起的非计划停机,保障工厂生产正常运行。该水厂一立式悬臂泵于2022年2月中旬停机,直到5月11日才重新开机。当天诊断工程师收到微信小程序告警通知,提示开机后泵两端振动快速上升,泵驱动端V速度最大值达到12mm/s,泵非驱动端加速度最大值达到120m/s2,包络值最大值达到300m/ s2,触发设备4级报警。图1 PHM系统报警通知02 故障诊断该立式悬臂泵基础信息如下:额定转速:1480RPM 额定功率:45kW电机驱动端轴承型号:6313 电机非驱动端轴承型号:6312联轴器类型:弹性柱销联轴器 泵两端轴承型号:6312从iPHM设备健康智能维护云平台显示的机组振动趋势图(图2)可以看出, 5月12日开机后泵非驱动端振动值急剧上升,5月13日加速度包络峰值最高达到300m/s2。图2 机组振动趋势图图3泵非驱动端A加速度包络解调频谱图显示,泵非驱动端A包络解调分析主要以轴承外圈故障频率及其倍频为主,说明泵端轴承存在外圈损伤故障。图3 泵非驱动端包络解调频谱图泵驱动端V速度上升明显,且频谱中主要为未知频率谐波(排除转频及谐波、轴承故障频率及谐波、工频),速度频谱中低频段能量较高,考虑该类设备机械密封常出现故障,因此建议现场工程师同时检测机械密封是否存在泄漏。图4 泵驱动端V速度频谱综上分析,该立式悬臂泵存在轴承故障等故障,诊断师跟工厂管理人员做了沟通,建议现场及时停机检修,检修更换泵端机械密封和轴承。03 拆机验证现场工程师根据系统显示情况于5月13日立即停机安排检修,经检修发现机械密封泄露、轴承存在损伤;现场更换了轴承和机械密封。检修完成后振动幅值明显下降。设备报警消除。检修后于5月25日开机,该立式悬臂泵的振动幅值下降至良好范围,运行状态良好。图5 检修前后泵两端振动趋势图
  • [技术知识] 离心泵的主要性能参数,你都清楚了吗?
    离心泵的性能参数主要包括流量、扬程、功率、效率、允许吸入真空度及允许汽蚀余量等,这些参数反映了离心泵的综合性能,一般在离心泵的铭牌上都会标出这些基本参数的数值。大多数泵业生产厂家所用泵铭牌的内容及形式如图1所示。图1 离心泵铭牌示例01 流量流量又称为排量,是指泵在单位时间内排出的液体的数量(可由出口流量计测定),有体积流量和质量流量两种。体积流量:泵在单位时间内排出的液体的体积,一般用Q表示,常用单位为L/s(升/秒)、m3/s(米3/秒)或m3/h(米3/时)等。质量流量:泵在单位时间内排出的液体的质量,一般用G表示,常用单位为kg/s(千克/秒)、kg/h(千克/时)、t/d(吨/天)等。质量流量和体积流量的换算关系如下:G=ρQ式中G——质量流量,kg/s;Q——体积流量,m3/s;ρ——液体密度,kg/m3。02 扬程单位质量的液体从泵进口到泵出口的能量增值称为泵的扬程,也就是单位质量的液体通过泵所获得的有效能量,也称为泵的总扬程,常用符号H表示。在国际单位制中,扬程H的单位为J/kg,但习惯上常以液柱高度(m)来表示其能量头,这样比较形象。虽然泵的扬程单位与高度单位一致,都是米(m),但不应把泵的扬程简单理解为液体排送所能达到的高度,因为泵的总扬程不仅要用来提高液体的位置高度,还要用来克服液体在输送过程中的流动阻力以及提高液体的静压能和速度能。在本文中,为了与国内泵的型号及产品样本单位一致,扬程H的单位均用“米液柱”或“m”表示(“J/kg”与"m"之间可通过重力加速度g换算)。在工程计算中,可应用伯努利方程计算管路系统中泵所提供的扬程H,如图2所示。图2 离心泵装置示意图1—泵;2—吸液罐;3—底阀;4—吸入管路;5—吸入管调节阀;6—真空表;7—压力表;8—排出管调节阀;9—单向阀;10—排出管路;11—流量计;12—排液罐03 转速转速是指泵轴每分钟旋转的次数,一般用符号n表示,单位为r/min。转速是离心泵的一个很重要的性能指标,转速改变后,离心泵的流量、扬程、轴功率都要发生变化。一般泵产品样本上规定的转速是指泵的最高转速许可值,实际工作中最高不超过许可值的4%。04 功率功率是单位时间内所做的功,常用单位是瓦特(W)或千瓦(kW)。泵的功率有有效功率、轴功率和配用功率之分。(1)有效功率有效功率是离心泵的输出功率,即泵在单位时间内对输送出去的液体所做的功,用符号Ne表示,可按下式计算:式中 ρ——液体的密度,kg/m3;Q——体积流量,m3/s;H——扬程,m;G——重力加速度,m/s2;Ne——有效功率,kW。(2)轴功率轴功率是指离心泵的输入功率,即原动机传给泵轴的功率,用符号N表示。由于泵内存在各种损失,泵不可能将原动机输入的功率全部转变为液体的有效功率。(3)配用功率离心泵的配用功率是指与之配合的原动机的功率,用ND表示,它和轴功率的关系为:ND=(1.1~1.2)N一般情况下,当N<4.5kW时,取1.2;当4.5kW<N≤40kW时,取1.15;当N>40kW时,取1.10。通常泵铭牌上标明的功率不是有效功率,而是轴功率或配用功率。05 效率效率是表示离心泵性能好坏以及利用原动机能量多少的主要技术经济指标,是指泵的有效功率和轴功率的比值,又称为泵的总效率,用符号η表示。因为离心泵内存在各种损失,所以离心泵的效率不可能为100%。离心泵内存在的损失主要有:(1)容积损失。由于泵的泄漏,泵的实际排出量总是小于吸入量,这种损失称为容积损失,主要包括密封环泄漏损失、平衡机构泄漏损失、级间泄漏损失和轴封泄漏损失。(2)水力损失(又称流动损失)。离心泵内的流动损失主要包括摩擦阻力损失及冲击损失。摩擦阻力损失指液体流经吸入室、叶轮流道、蜗壳和扩压管(或导叶)时的沿程摩擦阻力损失以及液流流过弯道、突然收缩或扩大等管件所产生的局部阻力损失;冲击损失是指泵的实际流量偏离设计流量所造成的损失。(3)机械损失。高速转动的叶轮盘面与液体之间、轴与轴承之间、轴与轴封部件之间的机械摩擦造成的损失称为机械损失。06 允许吸入真空度及允许汽蚀余量允许吸入真空度和允许汽蚀余量是离心泵非常重要的性能参数,是表示离心泵抗汽蚀性能的指标,单位与扬程单位相同。
总条数:204 到第
上滑加载中