- 开发者
- EI
#EI#
- 预测模型在 LinkedIn 的产品中被广泛应用,如 Feed、广告、工作推荐、邮件营销、用户搜索等。这些模型在提升用户体验时起到了重要的作用。为了满足建模需求,LinkedIn 开发并且开源了 Photon-ML 大规模机器学习库。Photon-ML 基于 Apache Spark,能快速处理海量数据并具有强大的模型训练和诊断功能。 预测模型在 LinkedIn 的产品中被广泛应用,如 Feed、广告、工作推荐、邮件营销、用户搜索等。这些模型在提升用户体验时起到了重要的作用。为了满足建模需求,LinkedIn 开发并且开源了 Photon-ML 大规模机器学习库。Photon-ML 基于 Apache Spark,能快速处理海量数据并具有强大的模型训练和诊断功能。
- 这篇文章旨在阐述训练大规模深度学习模型时的分布式计算思想。 这篇文章旨在阐述训练大规模深度学习模型时的分布式计算思想。
- Jupyter Notebook 是一个非常常用的代码编辑器,它非常适合做数据分析与代码展示,很多云服务也采用它作为代码编辑器。此外,因为用这种编辑器看代码比较轻松,文档描述和输出效果也能进一步帮助理解,很多研究者都会采用 Jupyter 作为解释研究实现的工具。 Jupyter Notebook 是一个非常常用的代码编辑器,它非常适合做数据分析与代码展示,很多云服务也采用它作为代码编辑器。此外,因为用这种编辑器看代码比较轻松,文档描述和输出效果也能进一步帮助理解,很多研究者都会采用 Jupyter 作为解释研究实现的工具。
- 本文介绍图像文本识别(OCR)领域的最新技术进展。首先介绍应用背景,包括面临的技术挑战、典型应用场景、系统实施框架等。接着介绍搭建图文识别模型过程中经常被引用到的多种特征提取基础网络、物体检测网络框架,以及它们被应用到图文识别任务中所面临的场景适配问题。然后介绍最近三年来出现的各种文本边框检测模型、文字内容识别模型、端到端图文识别模型。最后介绍图文识别领域的大型公开数据集。 本文介绍图像文本识别(OCR)领域的最新技术进展。首先介绍应用背景,包括面临的技术挑战、典型应用场景、系统实施框架等。接着介绍搭建图文识别模型过程中经常被引用到的多种特征提取基础网络、物体检测网络框架,以及它们被应用到图文识别任务中所面临的场景适配问题。然后介绍最近三年来出现的各种文本边框检测模型、文字内容识别模型、端到端图文识别模型。最后介绍图文识别领域的大型公开数据集。
- 当前,深度学习之于自然语言处理,有其局限性。那么它所能起作用的边界在哪里呢?对此问题,我们应当深思。 近日,在北京语言大学举办的第四届语言与智能高峰论坛上,华为诺亚方舟实验室语音语义首席科学家刘群教授高屋建瓴,细致分析了深度学习时代NLP的已知与未知。 当前,深度学习之于自然语言处理,有其局限性。那么它所能起作用的边界在哪里呢?对此问题,我们应当深思。 近日,在北京语言大学举办的第四届语言与智能高峰论坛上,华为诺亚方舟实验室语音语义首席科学家刘群教授高屋建瓴,细致分析了深度学习时代NLP的已知与未知。
- Andrej Karpathy 是深度学习计算机视觉领域、生成式模型与强化学习领域的研究员。博士期间师从李飞飞。在读博期间,两次在谷歌实习,研究在 Youtube 视频上的大规模特征学习,2015 年在 DeepMind 实习,研究深度强化学习。毕业后,Karpathy 成为 OpenAI 的研究科学家,后于 2017 年 6 月加入特斯拉担任人工智能与自动驾驶视觉总监。 Andrej Karpathy 是深度学习计算机视觉领域、生成式模型与强化学习领域的研究员。博士期间师从李飞飞。在读博期间,两次在谷歌实习,研究在 Youtube 视频上的大规模特征学习,2015 年在 DeepMind 实习,研究深度强化学习。毕业后,Karpathy 成为 OpenAI 的研究科学家,后于 2017 年 6 月加入特斯拉担任人工智能与自动驾驶视觉总监。
- 人工智能,深度学习,机器学习……不管你在从事什么工作,都需要了解这些概念。否则的话,三年之内你就会变成一只恐龙。 —— 马克·库班 人工智能,深度学习,机器学习……不管你在从事什么工作,都需要了解这些概念。否则的话,三年之内你就会变成一只恐龙。 —— 马克·库班
- 作者会在本文中结合自己在视频推荐方面的工作经验,着重从工程实现方面,讲述如何对特征进行评估的问题。下文中,我们首先会厘清“特征评估”的概念,然后讲述特征评估的标准,最后是问题的反向排查。 作者会在本文中结合自己在视频推荐方面的工作经验,着重从工程实现方面,讲述如何对特征进行评估的问题。下文中,我们首先会厘清“特征评估”的概念,然后讲述特征评估的标准,最后是问题的反向排查。
- 本文搜集整理了Jupyter Notebook中TensorFlow和PyTorch的各种深度学习架构,模型和技巧,内容非常丰富,适用于Python 3.7,适合当做工具书。 大家可以将内容按照需要进行分割,打印出来,或者做成电子书等,随时查阅。 本文搜集整理了Jupyter Notebook中TensorFlow和PyTorch的各种深度学习架构,模型和技巧,内容非常丰富,适用于Python 3.7,适合当做工具书。 大家可以将内容按照需要进行分割,打印出来,或者做成电子书等,随时查阅。
- AI这么热,大家都想做AI,如何成为一个AI工程师,给大家一条学习路径参考一下,特别是CV方向的,里面包括了各种课程,资源,代码等,快来看看吧! AI这么热,大家都想做AI,如何成为一个AI工程师,给大家一条学习路径参考一下,特别是CV方向的,里面包括了各种课程,资源,代码等,快来看看吧!
- 在本文中,来自加拿大 Mila 研究所唐建课题组的研究人员提出了一种图上高性能的嵌入训练系统——GraphVite,训练百万级别的节点嵌入只需 1 分钟左右,比现有实现快 50 倍以上。该系统最大可处理二十亿边的图,是目前速度最快、规模最大的单机图嵌入系统。 在本文中,来自加拿大 Mila 研究所唐建课题组的研究人员提出了一种图上高性能的嵌入训练系统——GraphVite,训练百万级别的节点嵌入只需 1 分钟左右,比现有实现快 50 倍以上。该系统最大可处理二十亿边的图,是目前速度最快、规模最大的单机图嵌入系统。
- 熵”最初是热力学中的一个概念,后来在信息论中引入了信息熵的概念,用来表示不确定度的度量,不确定度越大,熵值越大。极限情况,当一个随机变量均匀分布时,熵值最大;完全确定时,熵值为0。以最大熵理论为基础的统计建模已经成为近年来自然语言处理领域最成功的机器学习方法。 熵”最初是热力学中的一个概念,后来在信息论中引入了信息熵的概念,用来表示不确定度的度量,不确定度越大,熵值越大。极限情况,当一个随机变量均匀分布时,熵值最大;完全确定时,熵值为0。以最大熵理论为基础的统计建模已经成为近年来自然语言处理领域最成功的机器学习方法。
- 2019 年 6 月 26 日,在 Sao Paulo 举行的 PAPIs.io LATAM 会议上,作为 Daitan 的代表,本文作者 Thalles Silva 举办了一个关于 TensorFlow(TF)2.0 的研讨会,并在会上探讨了一些关于 TF 2.0 的话题。研讨会的初衷是重点展示 2.0 版本同以往 1.x 版本的不同。 2019 年 6 月 26 日,在 Sao Paulo 举行的 PAPIs.io LATAM 会议上,作为 Daitan 的代表,本文作者 Thalles Silva 举办了一个关于 TensorFlow(TF)2.0 的研讨会,并在会上探讨了一些关于 TF 2.0 的话题。研讨会的初衷是重点展示 2.0 版本同以往 1.x 版本的不同。
- 因为人类的语言不通,《圣经》故事中的 “巴别塔” 没能建成,以失败告终。如何打破人类语言之间的屏障,也成为了人类一直希望解决的问题。 因为人类的语言不通,《圣经》故事中的 “巴别塔” 没能建成,以失败告终。如何打破人类语言之间的屏障,也成为了人类一直希望解决的问题。
- 让机器学习基于面部照片预测BMI不仅是一个有趣的项目,这种预测方法也有望成为未来医疗诊断的实用工具。本文介绍了一个通过面部图像预测BMI(身体质量指数)的神经网络项目。该项目由另一个基于人脸输入对人的年龄和性别进行分类的项目修改而来,借用了原项目训练模型的权重与通过网络摄像头探测用户面部的脚本。训练数据集本项目所采用的训练数据集为用户正面拍摄的4000张人脸图像及通过用户身高体重计算的BMI... 让机器学习基于面部照片预测BMI不仅是一个有趣的项目,这种预测方法也有望成为未来医疗诊断的实用工具。本文介绍了一个通过面部图像预测BMI(身体质量指数)的神经网络项目。该项目由另一个基于人脸输入对人的年龄和性别进行分类的项目修改而来,借用了原项目训练模型的权重与通过网络摄像头探测用户面部的脚本。训练数据集本项目所采用的训练数据集为用户正面拍摄的4000张人脸图像及通过用户身高体重计算的BMI...
上滑加载中
推荐直播
-
GaussDB数据库介绍
2025/01/07 周二 16:00-18:00
Steven 华为云学堂技术讲师
本期直播将介绍GaussDB数据库的发展历程、优势、架构、关键特性和部署模式等,旨在帮助开发者了解GaussDB数据库,并通过手把手实验教大家如何在华为云部署GaussDB数据库和使用gsql连接GaussDB数据库。
去报名 -
DTT年度收官盛典:华为开发者空间大咖汇,共探云端开发创新
2025/01/08 周三 16:30-18:00
Yawei 华为云开发工具和效率首席专家 Edwin 华为开发者空间产品总监
数字化转型进程持续加速,驱动着技术革新发展,华为开发者空间如何巧妙整合鸿蒙、昇腾、鲲鹏等核心资源,打破平台间的壁垒,实现跨平台协同?在科技迅猛发展的今天,开发者们如何迅速把握机遇,实现高效、创新的技术突破?DTT 年度收官盛典,将与大家共同探索华为开发者空间的创新奥秘。
去报名
热门标签