- 在此教程中,我们将对循环神经网络RNN模型及其原理进行一个简单的介绍,并实现RNN模型的训练和推理,目前支持MNIST、FashionMNIST和CIFAR-10等数据集,并给用户提供一个详细的帮助文档。同时,本项目还将实现循环神经网络的模型成员推理攻击,以及复杂场景下的成员推理攻击。 在此教程中,我们将对循环神经网络RNN模型及其原理进行一个简单的介绍,并实现RNN模型的训练和推理,目前支持MNIST、FashionMNIST和CIFAR-10等数据集,并给用户提供一个详细的帮助文档。同时,本项目还将实现循环神经网络的模型成员推理攻击,以及复杂场景下的成员推理攻击。
- 基于改进的灰狼优化支持向量机SVM的数据分类预测 介绍IGWO-SVM(Improved Grey Wolf Optimizer-Support Vector Machine)是一种结合了改进的灰狼优化算法(IGWO)和支持向量机(SVM)的数据分类方法。IGWO用于优化SVM的参数,旨在提高分类精度和泛化能力。通过这种方法,可以有效解决复杂数据集的分类问题。 应用使用场景金融领域:股票价... 基于改进的灰狼优化支持向量机SVM的数据分类预测 介绍IGWO-SVM(Improved Grey Wolf Optimizer-Support Vector Machine)是一种结合了改进的灰狼优化算法(IGWO)和支持向量机(SVM)的数据分类方法。IGWO用于优化SVM的参数,旨在提高分类精度和泛化能力。通过这种方法,可以有效解决复杂数据集的分类问题。 应用使用场景金融领域:股票价...
- 本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基 本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基
- 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图
- 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图
- 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯
- 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯
- 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图
- 本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基 本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基
- 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图
- 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯
- 本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基 本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基
- 在链表的操作中,环形链表是一个常见且需要特别处理的结构。当我们遇到一个包含环的链表时,如何找到环的入口结点是一个经典的问题。本文将详细介绍使用双指针技术来解决这一问题,并提供一个基于 Java 的实现代码。 在链表的操作中,环形链表是一个常见且需要特别处理的结构。当我们遇到一个包含环的链表时,如何找到环的入口结点是一个经典的问题。本文将详细介绍使用双指针技术来解决这一问题,并提供一个基于 Java 的实现代码。
- 数据结构的运用:使用集合 seen 来快速判断元素的种类是否已经出现,利用列表 ll 存储重复种类的元素。 贪心算法的思想:先选择前 k 个利益最大的元素,然后通过逐步替换来尝试优化结果,体现了贪心选择局部最优以期望达到全局最优的思路。 逻辑推理和计算能力:在计算优雅度、判断是否替换元素以及更新相关变量时,需要准确的逻辑推理和计算。 数据结构的运用:使用集合 seen 来快速判断元素的种类是否已经出现,利用列表 ll 存储重复种类的元素。 贪心算法的思想:先选择前 k 个利益最大的元素,然后通过逐步替换来尝试优化结果,体现了贪心选择局部最优以期望达到全局最优的思路。 逻辑推理和计算能力:在计算优雅度、判断是否替换元素以及更新相关变量时,需要准确的逻辑推理和计算。
- 数组能够提供快速的随机访问,使得在动态规划中获取和更新数据变得高效。例如在求解最长递增子序列问题时,我们可以用一个数组来存储中间计算的结果,方便后续阶段的使用。 2. 直观的状态表示: 通过数组可以直观地表示动态规划中的状态。比如在背包问题中,用一个二维数组来表示不同物品和不同背包容量下的最优解。 3. 便于空间优化: 数组能够提供快速的随机访问,使得在动态规划中获取和更新数据变得高效。例如在求解最长递增子序列问题时,我们可以用一个数组来存储中间计算的结果,方便后续阶段的使用。 2. 直观的状态表示: 通过数组可以直观地表示动态规划中的状态。比如在背包问题中,用一个二维数组来表示不同物品和不同背包容量下的最优解。 3. 便于空间优化:
上滑加载中
推荐直播
-
探秘仓颉编程语言:华为开发者空间的创新利器
2025/02/22 周六 15:00-16:30
华为云讲师团
本期直播将与您一起探秘颉编程语言上线华为开发者空间后,显著提升开发效率,在智能化开发支持、全场景跨平台适配能力、工具链与生态完备性、语言简洁与高性能特性等方面展现出的独特优势。直播看点: 1.java转仓颉的小工具 2.仓颉动画三方库lottie 3.开发者空间介绍及如何在空间用仓颉编程语言开发
回顾中 -
大模型Prompt工程深度实践
2025/02/24 周一 16:00-17:30
盖伦 华为云学堂技术讲师
如何让大模型精准理解开发需求并生成可靠输出?本期直播聚焦大模型Prompt工程核心技术:理解大模型推理基础原理,关键采样参数定义,提示词撰写关键策略及Prompt工程技巧分享。
去报名 -
华为云 x DeepSeek:AI驱动云上应用创新
2025/02/26 周三 16:00-18:00
华为云 AI专家大咖团
在 AI 技术飞速发展之际,DeepSeek 备受关注。它凭借哪些技术与理念脱颖而出?华为云与 DeepSeek 合作,将如何重塑产品与应用模式,助力企业数字化转型?在华为开发者空间,怎样高效部署 DeepSeek,搭建专属服务器?基于华为云平台,又该如何挖掘 DeepSeek 潜力,实现智能化升级?本期直播围绕DeepSeek在云上的应用案例,与DTSE布道师们一起探讨如何利用AI 驱动云上应用创新。
去报名
热门标签