- 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,上一篇文章是图像点运算的灰度化处理知识,包括各种灰度算法的实现,以及灰度线性变换和灰度非线性变换。这篇文章将详细讲解图像灰度线性变换,包括灰度上移、对比度增强、对比度减弱和灰度反色变换。希望文章对您有所帮助,如果有不足之处,还 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,上一篇文章是图像点运算的灰度化处理知识,包括各种灰度算法的实现,以及灰度线性变换和灰度非线性变换。这篇文章将详细讲解图像灰度线性变换,包括灰度上移、对比度增强、对比度减弱和灰度反色变换。希望文章对您有所帮助,如果有不足之处,还
- SWA:平均权重导致更广泛的最优和更好的泛化 摘要深度神经网络通常通过使用 SGD 变体优化损失函数以及衰减学习率来训练,直到收敛。 我们展示了沿 SGD 轨迹的多个点的简单平均,具有周期性或恒定的学习率,比传统训练具有更好的泛化能力。 我们还表明,这种随机权重平均 (SWA) 过程找到了比 SGD 更平坦的解决方案,并用单个模型逼近了最近的快速几何集成 (FGE) 方法。 使用 SWA,... SWA:平均权重导致更广泛的最优和更好的泛化 摘要深度神经网络通常通过使用 SGD 变体优化损失函数以及衰减学习率来训练,直到收敛。 我们展示了沿 SGD 轨迹的多个点的简单平均,具有周期性或恒定的学习率,比传统训练具有更好的泛化能力。 我们还表明,这种随机权重平均 (SWA) 过程找到了比 SGD 更平坦的解决方案,并用单个模型逼近了最近的快速几何集成 (FGE) 方法。 使用 SWA,...
- 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,第一篇文章是图像点运算的灰度化处理知识,包括各种灰度算法的实现,以及灰度线性变换和灰度非线性变换。希望文章对您有所帮助,如果有不足之处,还请海涵。 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。第二部分将讲解图像运算和图像增强,第一篇文章是图像点运算的灰度化处理知识,包括各种灰度算法的实现,以及灰度线性变换和灰度非线性变换。希望文章对您有所帮助,如果有不足之处,还请海涵。
- 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。上一篇文章介绍图像采样处理。这篇文章将详细讲解图像金字塔,包括图像向上取样和向下取样。希望文章对您有所帮助,如果有不足之处,还请海涵。 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。上一篇文章介绍图像采样处理。这篇文章将详细讲解图像金字塔,包括图像向上取样和向下取样。希望文章对您有所帮助,如果有不足之处,还请海涵。
- 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。上一篇文章介绍图像几何变换,包括图像镜像、图像仿射和图像透视。这篇文章将介绍图像量化处理,即将图像像素点对应亮度的连续变化区间转换为单个特定值的过程。希望文章对您有所帮助,如果有不足之处,还请海涵。 欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。上一篇文章介绍图像几何变换,包括图像镜像、图像仿射和图像透视。这篇文章将介绍图像量化处理,即将图像像素点对应亮度的连续变化区间转换为单个特定值的过程。希望文章对您有所帮助,如果有不足之处,还请海涵。
- 4月20-22日,博鳌亚洲论坛(Boao Forum for Asia,BFA)2022年年会在海南举办。本届年会的主题为“疫情与世界:共促全球发展,构建共同未来”,华为云人工智能领域首席科学家、国际欧亚科学院院士(IEAS Academician)、IEEE Fellow田奇应邀参与分论坛 4月20-22日,博鳌亚洲论坛(Boao Forum for Asia,BFA)2022年年会在海南举办。本届年会的主题为“疫情与世界:共促全球发展,构建共同未来”,华为云人工智能领域首席科学家、国际欧亚科学院院士(IEAS Academician)、IEEE Fellow田奇应邀参与分论坛
- 机器学习《Machine Learning》----(2)模型评估与选择 机器学习《Machine Learning》----(2)模型评估与选择
- 盘古的训练以「昇腾AI处理器」为基座,同时借助了「CANN 异构计算架构」,让硬件算力得以充分释放,大大缩短了训练时间! 盘古的训练以「昇腾AI处理器」为基座,同时借助了「CANN 异构计算架构」,让硬件算力得以充分释放,大大缩短了训练时间!
- 论文连接:https://arxiv.org/pdf/1911.08947.pdfgithub链接:github.com 网络结构首先,图像输入特征提取主干,提取特征;其次,特征金字塔上采样到相同的尺寸,并进行特征级联得到特征F;然后,特征F用于预测概率图(probability map P)和阈值图(threshold map T)最后,通过P和F计算近似二值图(approximate b... 论文连接:https://arxiv.org/pdf/1911.08947.pdfgithub链接:github.com 网络结构首先,图像输入特征提取主干,提取特征;其次,特征金字塔上采样到相同的尺寸,并进行特征级联得到特征F;然后,特征F用于预测概率图(probability map P)和阈值图(threshold map T)最后,通过P和F计算近似二值图(approximate b...
- 继CV/NLP领域的成功后,深度学习开始逐步进入生物领域,例如细胞影像分类,基因组研究等。在药物研发及蛋白工程领域,设计具备成药潜力的分子是重要的目标,AI与小分子药物结合的研究已较多,目前AI方法亦逐渐被用于生物药物的研发,例如抗体药物。本篇综述简要介绍了抗体及深度学习的背景,然后深入介绍了数种深度学习算法,该类型算法主要用于抗体结构/Affinity/互作/Target研究等。 继CV/NLP领域的成功后,深度学习开始逐步进入生物领域,例如细胞影像分类,基因组研究等。在药物研发及蛋白工程领域,设计具备成药潜力的分子是重要的目标,AI与小分子药物结合的研究已较多,目前AI方法亦逐渐被用于生物药物的研发,例如抗体药物。本篇综述简要介绍了抗体及深度学习的背景,然后深入介绍了数种深度学习算法,该类型算法主要用于抗体结构/Affinity/互作/Target研究等。
- 摘要本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNet,其核心是采用了深度可分离卷积,其不仅可以降低模型计算复杂度,而且可以大大降低模型大小,本文使用的案例训练出来的模型只有38M,适合应用在真实的移动端应用场景。关于MobileNet的介绍可以看我以前的文章:https://... 摘要本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNet,其核心是采用了深度可分离卷积,其不仅可以降低模型计算复杂度,而且可以大大降低模型大小,本文使用的案例训练出来的模型只有38M,适合应用在真实的移动端应用场景。关于MobileNet的介绍可以看我以前的文章:https://...
- 基于机器学习的恶意代码检测技术详解;一文详解复杂度分析;16张图解一致性哈希算法... 基于机器学习的恶意代码检测技术详解;一文详解复杂度分析;16张图解一致性哈希算法...
- 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。基于机器学习的恶意代码检测方法一直是学界研究的热点,由于机器学习算法可以挖掘输入特征之间更深层次的联系,更加充分地利用恶意代码的信息,因此基于机器学习的恶意代码检测往往表现出较高的准确率,并且一定程度上可以对未知的恶意代码实现自动化的分析。 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。基于机器学习的恶意代码检测方法一直是学界研究的热点,由于机器学习算法可以挖掘输入特征之间更深层次的联系,更加充分地利用恶意代码的信息,因此基于机器学习的恶意代码检测往往表现出较高的准确率,并且一定程度上可以对未知的恶意代码实现自动化的分析。
- 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将分享两篇论文,介绍机器学习是如何运用到恶意代码攻击中的,并谈谈自己的理解,后续深入研究尝试分享相关实验,目前还是小白一只。基础性文章,希望对您有所帮助。 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将分享两篇论文,介绍机器学习是如何运用到恶意代码攻击中的,并谈谈自己的理解,后续深入研究尝试分享相关实验,目前还是小白一只。基础性文章,希望对您有所帮助。
- 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将详细分享基于机器学习的恶意代码检测技术,主要参考郑师兄的视频总结,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。同时,详细分享了基于机器学习的恶意代码检测技术,希望您喜欢。 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将详细分享基于机器学习的恶意代码检测技术,主要参考郑师兄的视频总结,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。同时,详细分享了基于机器学习的恶意代码检测技术,希望您喜欢。
上滑加载中
推荐直播
-
OpenHarmony应用开发之网络数据请求与数据解析
2025/01/16 周四 19:00-20:30
华为开发者布道师、南京师范大学泰州学院副教授,硕士研究生导师,开放原子教育银牌认证讲师
科技浪潮中,鸿蒙生态强势崛起,OpenHarmony开启智能终端无限可能。当下,其原生应用开发适配潜力巨大,终端设备已广泛融入生活各场景,从家居到办公、穿戴至车载。 现在,机会敲门!我们的直播聚焦OpenHarmony关键的网络数据请求与解析,抛开晦涩理论,用真实案例带你掌握数据访问接口,轻松应对复杂网络请求、精准解析Json与Xml数据。参与直播,为开发鸿蒙App夯实基础,抢占科技新高地,别错过!
回顾中 -
Ascend C高层API设计原理与实现系列
2025/01/17 周五 15:30-17:00
Ascend C 技术专家
以LayerNorm算子开发为例,讲解开箱即用的Ascend C高层API
回顾中
热门标签