- 图灵测试(Turing Test)是由英国数学家、逻辑学家、计算机科学的先驱艾伦·图灵(Alan Turing)在1950年提出的一个思想实验。这个测试的目的是为了判断机器是否能够展现出与人类不可区分的智能行为。在图灵测试中,一名人类评判员与两个隐藏的参与者进行对话——一个人类和一个机器。评判员通过打字的方式与两个参与者交流,但无法直接看到他们。对话的方式可以是文字游戏、回答问题或者任何形式... 图灵测试(Turing Test)是由英国数学家、逻辑学家、计算机科学的先驱艾伦·图灵(Alan Turing)在1950年提出的一个思想实验。这个测试的目的是为了判断机器是否能够展现出与人类不可区分的智能行为。在图灵测试中,一名人类评判员与两个隐藏的参与者进行对话——一个人类和一个机器。评判员通过打字的方式与两个参与者交流,但无法直接看到他们。对话的方式可以是文字游戏、回答问题或者任何形式...
- NL2SQL之DB-GPT-Hub<详解篇>:text2sql任务的微调框架和基准对比 NL2SQL之DB-GPT-Hub<详解篇>:text2sql任务的微调框架和基准对比
- RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验 RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
- 深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析 深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
- AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出
- 专业级语义搜索优化:利用 Cohere AI、BGE Re-Ranker 及 Jina Reranker 实现精准结果重排 专业级语义搜索优化:利用 Cohere AI、BGE Re-Ranker 及 Jina Reranker 实现精准结果重排
- llama 大模型介绍我们介绍 LLaMA,这是一个基础语言模型的集合,参数范围从 7B 到 65B。我们在数万亿个Token上训练我们的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而无需诉诸专有的和无法访问的数据集。特别是,LLaMA-13B 在大多数基准测试中都优于 GPT-3 (175B), llama2 大模型介绍我们开发并发布了 Llama 2,这是一组经过预训练... llama 大模型介绍我们介绍 LLaMA,这是一个基础语言模型的集合,参数范围从 7B 到 65B。我们在数万亿个Token上训练我们的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而无需诉诸专有的和无法访问的数据集。特别是,LLaMA-13B 在大多数基准测试中都优于 GPT-3 (175B), llama2 大模型介绍我们开发并发布了 Llama 2,这是一组经过预训练...
- 🏆 作者简介,愚公搬代码🏆《头衔》:华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主,腾讯云内容共创官,掘金优秀博主,亚马逊技领云博主,51CTO博客专家等。🏆《近期荣誉》:2022年度博客之星TOP2,2023年度博客之星TOP2,2022年华为云十佳博主,2023年华为云十佳博主... 🏆 作者简介,愚公搬代码🏆《头衔》:华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主,腾讯云内容共创官,掘金优秀博主,亚马逊技领云博主,51CTO博客专家等。🏆《近期荣誉》:2022年度博客之星TOP2,2023年度博客之星TOP2,2022年华为云十佳博主,2023年华为云十佳博主...
- 前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0... 前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0...
- 前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0... 前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0...
- 逻辑回归是⼀种⽤于解决⼆分类问题的监督学习算法,其基本原理是使⽤ 逻辑函数(也称为Sigmoid函数) 来建模因变量(输出)与⾃变量(输⼊)之间的概率关系。逻辑回归的⽬标是估计某个事件发⽣的概率,通常表示为0或1,例如肿瘤是恶性(1)或良性(0)。 1.基本原理逻辑回归基于以下思想:我们希望将线性组合的输出映射到⼀个介于0和1之间的概率值,以表示事件发⽣的可能性。为此,逻辑回归使⽤逻辑函数(... 逻辑回归是⼀种⽤于解决⼆分类问题的监督学习算法,其基本原理是使⽤ 逻辑函数(也称为Sigmoid函数) 来建模因变量(输出)与⾃变量(输⼊)之间的概率关系。逻辑回归的⽬标是估计某个事件发⽣的概率,通常表示为0或1,例如肿瘤是恶性(1)或良性(0)。 1.基本原理逻辑回归基于以下思想:我们希望将线性组合的输出映射到⼀个介于0和1之间的概率值,以表示事件发⽣的可能性。为此,逻辑回归使⽤逻辑函数(...
- MobileNetV4实战:使用MobileNetV4实现图像分类任务(一)@[toc] 摘要论文链接:https://arxiv.org/pdf/2404.10518MobileNetV4,作为新一代移动设备神经网络架构,凭借其创新的通用倒置瓶颈UIB块和Mobile MQA注意力块,实现了计算效率和运行速度的显著提升。该架构通过精炼的神经架构搜索NAS方法,创建了多个卓越性能的移动设备模... MobileNetV4实战:使用MobileNetV4实现图像分类任务(一)@[toc] 摘要论文链接:https://arxiv.org/pdf/2404.10518MobileNetV4,作为新一代移动设备神经网络架构,凭借其创新的通用倒置瓶颈UIB块和Mobile MQA注意力块,实现了计算效率和运行速度的显著提升。该架构通过精炼的神经架构搜索NAS方法,创建了多个卓越性能的移动设备模...
- 摘要YOLO-World模型确实是一个突破性的创新,它结合了YOLOv8框架的实时性能与开放式词汇检测的能力,为众多视觉应用提供了前所未有的解决方案。以下是对YOLO-World模型的进一步解读:模型架构与功能YOLO-World模型充分利用了YOLOv8框架的先进特性,并引入了开放式词汇检测功能。这一创新使得模型能够识别并检测图像中任何由描述性文本指定的物体,无需预先定义对象类别。这一功... 摘要YOLO-World模型确实是一个突破性的创新,它结合了YOLOv8框架的实时性能与开放式词汇检测的能力,为众多视觉应用提供了前所未有的解决方案。以下是对YOLO-World模型的进一步解读:模型架构与功能YOLO-World模型充分利用了YOLOv8框架的先进特性,并引入了开放式词汇检测功能。这一创新使得模型能够识别并检测图像中任何由描述性文本指定的物体,无需预先定义对象类别。这一功...
- 摘要https://arxiv.org/pdf/2401.09417v1.pdf最近,具有高效硬件感知设计的状态空间模型(SSMs),例如Mamba,在长序列建模方面展现出了巨大潜力。纯粹基于SSMs构建高效和通用的视觉骨干网络是一个吸引人的方向。然而,由于视觉数据的空间敏感性和视觉理解的全局上下文需求,用SSMs表示视觉数据是一项挑战。本文表明,视觉表示学习对自注意力的依赖不是必需的,并... 摘要https://arxiv.org/pdf/2401.09417v1.pdf最近,具有高效硬件感知设计的状态空间模型(SSMs),例如Mamba,在长序列建模方面展现出了巨大潜力。纯粹基于SSMs构建高效和通用的视觉骨干网络是一个吸引人的方向。然而,由于视觉数据的空间敏感性和视觉理解的全局上下文需求,用SSMs表示视觉数据是一项挑战。本文表明,视觉表示学习对自注意力的依赖不是必需的,并...
- 摘要SG-Former是一种新型的Transformer模型,它被提出以降低视觉Transformer的计算成本,同时保持其优秀的性能表现。计算成本的降低使得SG-Former能够更有效地处理大规模的特征映射,从而提高了模型的效率和全局感知能力。SG-Former的核心思想是利用显著性图来引导Transformer模型的学习。显著性图用于估计每个区域的重要性,从而可以根据这些重要性对Tok... 摘要SG-Former是一种新型的Transformer模型,它被提出以降低视觉Transformer的计算成本,同时保持其优秀的性能表现。计算成本的降低使得SG-Former能够更有效地处理大规模的特征映射,从而提高了模型的效率和全局感知能力。SG-Former的核心思想是利用显著性图来引导Transformer模型的学习。显著性图用于估计每个区域的重要性,从而可以根据这些重要性对Tok...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签