- 论文连接:https://arxiv.org/pdf/1911.08947.pdfgithub链接:github.com 网络结构首先,图像输入特征提取主干,提取特征;其次,特征金字塔上采样到相同的尺寸,并进行特征级联得到特征F;然后,特征F用于预测概率图(probability map P)和阈值图(threshold map T)最后,通过P和F计算近似二值图(approximate b... 论文连接:https://arxiv.org/pdf/1911.08947.pdfgithub链接:github.com 网络结构首先,图像输入特征提取主干,提取特征;其次,特征金字塔上采样到相同的尺寸,并进行特征级联得到特征F;然后,特征F用于预测概率图(probability map P)和阈值图(threshold map T)最后,通过P和F计算近似二值图(approximate b...
- 继CV/NLP领域的成功后,深度学习开始逐步进入生物领域,例如细胞影像分类,基因组研究等。在药物研发及蛋白工程领域,设计具备成药潜力的分子是重要的目标,AI与小分子药物结合的研究已较多,目前AI方法亦逐渐被用于生物药物的研发,例如抗体药物。本篇综述简要介绍了抗体及深度学习的背景,然后深入介绍了数种深度学习算法,该类型算法主要用于抗体结构/Affinity/互作/Target研究等。 继CV/NLP领域的成功后,深度学习开始逐步进入生物领域,例如细胞影像分类,基因组研究等。在药物研发及蛋白工程领域,设计具备成药潜力的分子是重要的目标,AI与小分子药物结合的研究已较多,目前AI方法亦逐渐被用于生物药物的研发,例如抗体药物。本篇综述简要介绍了抗体及深度学习的背景,然后深入介绍了数种深度学习算法,该类型算法主要用于抗体结构/Affinity/互作/Target研究等。
- 摘要本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNet,其核心是采用了深度可分离卷积,其不仅可以降低模型计算复杂度,而且可以大大降低模型大小,本文使用的案例训练出来的模型只有38M,适合应用在真实的移动端应用场景。关于MobileNet的介绍可以看我以前的文章:https://... 摘要本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNet,其核心是采用了深度可分离卷积,其不仅可以降低模型计算复杂度,而且可以大大降低模型大小,本文使用的案例训练出来的模型只有38M,适合应用在真实的移动端应用场景。关于MobileNet的介绍可以看我以前的文章:https://...
- 基于机器学习的恶意代码检测技术详解;一文详解复杂度分析;16张图解一致性哈希算法... 基于机器学习的恶意代码检测技术详解;一文详解复杂度分析;16张图解一致性哈希算法...
- 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。基于机器学习的恶意代码检测方法一直是学界研究的热点,由于机器学习算法可以挖掘输入特征之间更深层次的联系,更加充分地利用恶意代码的信息,因此基于机器学习的恶意代码检测往往表现出较高的准确率,并且一定程度上可以对未知的恶意代码实现自动化的分析。 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。基于机器学习的恶意代码检测方法一直是学界研究的热点,由于机器学习算法可以挖掘输入特征之间更深层次的联系,更加充分地利用恶意代码的信息,因此基于机器学习的恶意代码检测往往表现出较高的准确率,并且一定程度上可以对未知的恶意代码实现自动化的分析。
- 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将分享两篇论文,介绍机器学习是如何运用到恶意代码攻击中的,并谈谈自己的理解,后续深入研究尝试分享相关实验,目前还是小白一只。基础性文章,希望对您有所帮助。 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将分享两篇论文,介绍机器学习是如何运用到恶意代码攻击中的,并谈谈自己的理解,后续深入研究尝试分享相关实验,目前还是小白一只。基础性文章,希望对您有所帮助。
- 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将详细分享基于机器学习的恶意代码检测技术,主要参考郑师兄的视频总结,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。同时,详细分享了基于机器学习的恶意代码检测技术,希望您喜欢。 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将详细分享基于机器学习的恶意代码检测技术,主要参考郑师兄的视频总结,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。同时,详细分享了基于机器学习的恶意代码检测技术,希望您喜欢。
- 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将分享机器学习在安全领域的应用,并复现一个基于机器学习(逻辑回归)的恶意请求识别。基础性入门文章,只希望对初学者有所帮助。 作者将打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。这篇文章将分享机器学习在安全领域的应用,并复现一个基于机器学习(逻辑回归)的恶意请求识别。基础性入门文章,只希望对初学者有所帮助。
- 基于LeNet5的手写数字识别 实验介绍LeNet5 + MNIST被誉为深度学习领域的“Hello world”。本实验主要介绍使用MindSpore在MNIST手写数字数据集上开发和训练一个LeNet5模型,并验证模型精度。 实验目的了解如何使用MindSpore进行简单卷积神经网络的开发。了解如何使用MindSpore进行简单图片分类任务的训练。了解如何使用MindSpore进行简单... 基于LeNet5的手写数字识别 实验介绍LeNet5 + MNIST被誉为深度学习领域的“Hello world”。本实验主要介绍使用MindSpore在MNIST手写数字数据集上开发和训练一个LeNet5模型,并验证模型精度。 实验目的了解如何使用MindSpore进行简单卷积神经网络的开发。了解如何使用MindSpore进行简单图片分类任务的训练。了解如何使用MindSpore进行简单...
- 赛题 一、赛事背景随着工业化和城镇化的快速发展,环境问题日益突出。空气污染是全球最重要的环境问题之一,影响着人们的健康、生产和生活。为了改善空气质量,我国加大监测和环保力度,增加空气质量监测站点,实施蓝天保卫战,并将空气质量水平与污染治理水平纳入部门工作考核。科学有效地评价空气质量,能够为预防和治理空气污染提供科学依据,有利于交通或环境管理部门实施污染控制,降低空气污染的影响,改善人类福祉... 赛题 一、赛事背景随着工业化和城镇化的快速发展,环境问题日益突出。空气污染是全球最重要的环境问题之一,影响着人们的健康、生产和生活。为了改善空气质量,我国加大监测和环保力度,增加空气质量监测站点,实施蓝天保卫战,并将空气质量水平与污染治理水平纳入部门工作考核。科学有效地评价空气质量,能够为预防和治理空气污染提供科学依据,有利于交通或环境管理部门实施污染控制,降低空气污染的影响,改善人类福祉...
- 作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。AI技术蓬勃发展,无论是金融服务、线下生活、还是医疗健康都有AI的影子,那保护好这些AI系统的安全是非常必要也是非常重要的。这篇文章将详细讲解对抗样本相关知识点。 作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。AI技术蓬勃发展,无论是金融服务、线下生活、还是医疗健康都有AI的影子,那保护好这些AI系统的安全是非常必要也是非常重要的。这篇文章将详细讲解对抗样本相关知识点。
- 摘要论文地址:https://arxiv.org/pdf/2103.06030.pdf联邦学习使分布式医疗机构可以共同学习具有隐私保护功能的共享预测模型。在进行临床部署时,如果将联合学习中训练的模型应用于联盟外部完全看不见的医院,仍然会遭受性能下降的困扰。在本文中,我们指出并解决了联邦域泛化(FedDG)的一种新的问题设置,其目的是从多个分布式源域中学习联邦模型,使其可以直接推广到看... 摘要论文地址:https://arxiv.org/pdf/2103.06030.pdf联邦学习使分布式医疗机构可以共同学习具有隐私保护功能的共享预测模型。在进行临床部署时,如果将联合学习中训练的模型应用于联盟外部完全看不见的医院,仍然会遭受性能下降的困扰。在本文中,我们指出并解决了联邦域泛化(FedDG)的一种新的问题设置,其目的是从多个分布式源域中学习联邦模型,使其可以直接推广到看...
- 引言:联邦学习定义了一个机器学习框架,在这个框架下,不同的数据拥有方可以在不交换彼此数据的情况下,建立一个虚拟的共有模型,这个虚拟模型的效果等同于各方把数据聚合在一起建立的最优模型。这样,建好的模型在各自的区域仅为本地的目标服务。在这样一个联邦机制下,各个参与者的身份和地位相同,而联邦系统帮助大家建立了“共同富裕”的策略。由于在建立虚拟模型的时候,数据本身不移动,也不会泄露用户隐私或影响数... 引言:联邦学习定义了一个机器学习框架,在这个框架下,不同的数据拥有方可以在不交换彼此数据的情况下,建立一个虚拟的共有模型,这个虚拟模型的效果等同于各方把数据聚合在一起建立的最优模型。这样,建好的模型在各自的区域仅为本地的目标服务。在这样一个联邦机制下,各个参与者的身份和地位相同,而联邦系统帮助大家建立了“共同富裕”的策略。由于在建立虚拟模型的时候,数据本身不移动,也不会泄露用户隐私或影响数...
- 垃圾分类是个比较古老的行业,需要利用大量人力来完成,一些城市甚至号召志愿者参与垃圾分类工作的监督工作。而利用AI分类技术,则可以快速分拣垃圾,减轻志愿者的工作,降低人力成本。智能化分拣可用在居民投递的垃圾箱终端设备上,利用训练垃圾的检测模型,识别厨余垃圾里是否有其他垃圾,如塑料袋、纸张等。如果有,这款产品可以把信息上报给用户,加以提醒:「你这次投递错了,下不为例」;同时也会提醒运营人员进行手动分拣 垃圾分类是个比较古老的行业,需要利用大量人力来完成,一些城市甚至号召志愿者参与垃圾分类工作的监督工作。而利用AI分类技术,则可以快速分拣垃圾,减轻志愿者的工作,降低人力成本。智能化分拣可用在居民投递的垃圾箱终端设备上,利用训练垃圾的检测模型,识别厨余垃圾里是否有其他垃圾,如塑料袋、纸张等。如果有,这款产品可以把信息上报给用户,加以提醒:「你这次投递错了,下不为例」;同时也会提醒运营人员进行手动分拣
- ConvNeXts 完全由标准 ConvNet 模块构建,在准确性和可扩展性方面与 Transformer 竞争,实现 87.8% ImageNet top-1 准确率,在 COCO 检测和 ADE20K 分割方面优于 Swin Transformers,同时保持标准 ConvNet 的简单性和效率。论文链接:https://arxiv.org/pdf/2201.03545.pdf代码链接:... ConvNeXts 完全由标准 ConvNet 模块构建,在准确性和可扩展性方面与 Transformer 竞争,实现 87.8% ImageNet top-1 准确率,在 COCO 检测和 ADE20K 分割方面优于 Swin Transformers,同时保持标准 ConvNet 的简单性和效率。论文链接:https://arxiv.org/pdf/2201.03545.pdf代码链接:...
上滑加载中
推荐直播
-
通过Rust语言计算加速技术突破图片识别性能瓶颈
2022/05/31 周二 17:00-18:30
李老师 工程师B
为您讲解在Rust项目中如何利用计算加速技术帮助开发者解决图片识别等场景下的性能瓶颈问题。
即将直播 -
ModelBox隔空作画 绘制你的专属画作
2022/05/31 周二 19:00-20:00
华为云算法工程师 小鱼
本期直播教你基于ModelBox框架实现AI隔空作画,将云端训练模型转换为开发板上的AI应用! 1、强大并实用!实现ModelArts平台训练模型应用到端侧硬件。 2、简单易上手!教你如何使用开发板进行AI应用开发。 3、儿童节不知道给孩子什么礼物?来直播间用AI隔空作画,让TA惊喜满分。
去报名 -
制造业企业如何建设“条码工厂”
2022/06/01 周三 16:00-17:00
沈涛 帆软制造业行业化高级顾问
本次直播为您分享传统制造业在数字化转型中面临的难题,结合制造企业落地实践案例分享报工、设备、仓库等场景最佳实践,现学现用。
即将直播
热门标签