- 1.关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph L)系列【一】 1.关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph L)系列【一】
- 4.NLP领域任务如何选择合适预训练模型以及选择合适的方案【规范建议】【ERNIE模型首选】 4.NLP领域任务如何选择合适预训练模型以及选择合适的方案【规范建议】【ERNIE模型首选】
- 1、什么是自注意力self-attention?2、Transformer为什么需要进行Multi-head Attention?3、self-attention为什么要使用Q、K、V?3、为什么Q、K、V代表了注意力?4、Q、K、V是怎么得到的5、多头是什么意思?6、Transformer在训练什么?7、Q、K矩阵相乘为什么最后要除以√dk?8、Transformer如何实现并行化? 1、什么是自注意力self-attention?2、Transformer为什么需要进行Multi-head Attention?3、self-attention为什么要使用Q、K、V?3、为什么Q、K、V代表了注意力?4、Q、K、V是怎么得到的5、多头是什么意思?6、Transformer在训练什么?7、Q、K矩阵相乘为什么最后要除以√dk?8、Transformer如何实现并行化?
- 本项目主要讲解了犯罪名预测任务、以及doccano标注指南(对于多分类多标签问题),和对性能指标的简单探讨,可以看到实际更多问题是关于多标签分类的。 本项目主要讲解了犯罪名预测任务、以及doccano标注指南(对于多分类多标签问题),和对性能指标的简单探讨,可以看到实际更多问题是关于多标签分类的。
- AiTrust下预训练和小样本学习在中文医疗信息处理挑战榜CBLUE表现 AiTrust下预训练和小样本学习在中文医疗信息处理挑战榜CBLUE表现
- 近年来,语义表示(language representation)技术的发展,使得 “预训练-微调” 作为解决NLP任务的一种新的范式开始出现。一个通用的表示能力强的模型被选择为语义表示模型,在预训练阶段,用大量的语料和特定的任务训练该模型,使其编码海量的语义知识;在微调阶段,该模型会被加上不同的简单输出层用以解决下游的 NLP 任务。早期较为著名的语义表示模型包括[ELMo] 近年来,语义表示(language representation)技术的发展,使得 “预训练-微调” 作为解决NLP任务的一种新的范式开始出现。一个通用的表示能力强的模型被选择为语义表示模型,在预训练阶段,用大量的语料和特定的任务训练该模型,使其编码海量的语义知识;在微调阶段,该模型会被加上不同的简单输出层用以解决下游的 NLP 任务。早期较为著名的语义表示模型包括[ELMo]
- 机器翻译的最大的优点就是速度快,输入一段文字,瞬间就能看到结果,特别是查询外文文献资料时,有个快速的翻译工具是非常方便的。目前,华为云除了提供了整段文字翻译接口外,还实现了对整篇文章的翻译,这样的速度是人工所不能比拟的。 机器翻译的最大的优点就是速度快,输入一段文字,瞬间就能看到结果,特别是查询外文文献资料时,有个快速的翻译工具是非常方便的。目前,华为云除了提供了整段文字翻译接口外,还实现了对整篇文章的翻译,这样的速度是人工所不能比拟的。
- 自然语言处理=======python利用word2vec实现计算词语相似度【gensim实现】 自然语言处理=======python利用word2vec实现计算词语相似度【gensim实现】
- 💋💋💋**如何让电脑听懂我说的话,或者说看懂我输入的文字,这时候自然语言处理该上台了。** FAQ 问答系统(新冠病毒/寝室)《《让电脑理解我说的话》》------更详细的了解和掌握自然语言知识(不再害怕面试~~~) 💋💋💋**如何让电脑听懂我说的话,或者说看懂我输入的文字,这时候自然语言处理该上台了。** FAQ 问答系统(新冠病毒/寝室)《《让电脑理解我说的话》》------更详细的了解和掌握自然语言知识(不再害怕面试~~~)
- 学习总结(1)学习spacy的nlp对象、toke对象、span对象;在统计模型的依存标注、词性标注、命名实体标注任务中的用法,以及基于规则的匹配matcher。![在这里插入图片描述](https://img-blog.csdnimg.cn/ebf31d957d6f4a8197fc5b5726a1f3e5.png#pic_center#pic_center =400x)@[toc] 零、... 学习总结(1)学习spacy的nlp对象、toke对象、span对象;在统计模型的依存标注、词性标注、命名实体标注任务中的用法,以及基于规则的匹配matcher。![在这里插入图片描述](https://img-blog.csdnimg.cn/ebf31d957d6f4a8197fc5b5726a1f3e5.png#pic_center#pic_center =400x)@[toc] 零、...
- 无 无
- 一个全新的非结构化数据世界现已开放供您探索。现在您已经了解了文本分析任务的基础知识,您可以找到一些文本进行分析,看看您可以了解关于文本本身以及编写它们的人和它们所涉及的主题的内容。 一个全新的非结构化数据世界现已开放供您探索。现在您已经了解了文本分析任务的基础知识,您可以找到一些文本进行分析,看看您可以了解关于文本本身以及编写它们的人和它们所涉及的主题的内容。
- 前言 Transformer 是 Google 的团队在 2017 年提出的一种 NLP 经典模型,目前已经在目标检测、自然语言处理、时序预测等多个深度学习领域获得了应用,成为了新的研究热点。 论文题... 前言 Transformer 是 Google 的团队在 2017 年提出的一种 NLP 经典模型,目前已经在目标检测、自然语言处理、时序预测等多个深度学习领域获得了应用,成为了新的研究热点。 论文题...
- TextRNN TextRNN仅仅是将Word Embedding后,输入到双向LSTM中,然后对最后一位的输出输入到全连接层中,在对其进行softmax分类即可,模型如下图: 代码: clas... TextRNN TextRNN仅仅是将Word Embedding后,输入到双向LSTM中,然后对最后一位的输出输入到全连接层中,在对其进行softmax分类即可,模型如下图: 代码: clas...
- 利用人工智能进行舆情分析与社交媒体监测随着社交媒体的广泛使用,舆情分析和社交媒体监测在企业、政府和媒体机构中变得至关重要。人工智能(AI)的进步为舆情分析提供了强大的技术支持,帮助分析和预测社交媒体平台上的趋势和情绪。本文将探讨如何使用AI技术实现有效的舆情分析,并提供相应的代码实例。 一、舆情分析的背景与重要性在当前的数字化时代,社交媒体已成为人们获取信息、表达观点的重要渠道。舆情分析通... 利用人工智能进行舆情分析与社交媒体监测随着社交媒体的广泛使用,舆情分析和社交媒体监测在企业、政府和媒体机构中变得至关重要。人工智能(AI)的进步为舆情分析提供了强大的技术支持,帮助分析和预测社交媒体平台上的趋势和情绪。本文将探讨如何使用AI技术实现有效的舆情分析,并提供相应的代码实例。 一、舆情分析的背景与重要性在当前的数字化时代,社交媒体已成为人们获取信息、表达观点的重要渠道。舆情分析通...
上滑加载中
推荐直播
-
物联网资深专家带你轻松构建AIoT智能场景应用
2024/11/21 周四 16:30-18:00
管老师 华为云IoT DTSE技术布道师
如何轻松构建AIoT智能场景应用?本期直播将聚焦华为云设备接入平台,结合AI、鸿蒙(OpenHarmony)、大数据等技术,实现物联网端云协同创新场景,教您如何打造更有实用性及创新性的AIoT行业标杆应用。
回顾中 -
Ascend C算子编程之旅:基础入门篇
2024/11/22 周五 16:00-17:30
莫老师 昇腾CANN专家
介绍Ascend C算子基本概念、异构计算架构CANN和Ascend C基本概述,以及Ascend C快速入门,夯实Ascend C算子编程基础
即将直播 -
深入解析:华为全栈AI解决方案与云智能开放能力
2024/11/22 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播我们将重点为大家介绍华为全栈全场景AI解决方案以和华为云企业智能AI开放能力。旨在帮助开发者深入理解华为AI解决方案,并能够更加熟练地运用这些技术。通过洞悉华为解决方案,了解人工智能完整生态链条的构造。
去报名
热门标签