- 扩增方法:回译 将文本数据翻译成某种语言,然后再将其翻译回原始语言。回译可以生成带有不同单词的文本数据,同时保留文本数据的上下文。 一般情况下回译需要借助翻译API来完成,需要耗费一定的时间。 扩增方法:同义词替换 从句子中随机选择N个非停止词,随机选择的同义词替换这些单词。 替换前:This article&nbs... 扩增方法:回译 将文本数据翻译成某种语言,然后再将其翻译回原始语言。回译可以生成带有不同单词的文本数据,同时保留文本数据的上下文。 一般情况下回译需要借助翻译API来完成,需要耗费一定的时间。 扩增方法:同义词替换 从句子中随机选择N个非停止词,随机选择的同义词替换这些单词。 替换前:This article&nbs...
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第3章,第3.4.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第3章,第3.4.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第3章,第3.2.2节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第3章,第3.2.2节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第2章,第2.5节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第2章,第2.5节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第2章,第2.4.3节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第2章,第2.4.3节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第2章,第2.4.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第2章,第2.4.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第2章,第2.1.2节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第2章,第2.1.2节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.6.3节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.6.3节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.6.2节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.6.2节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.6.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.6.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.3.2节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.3.2节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。 本节书摘来自华章计算机《TensorFlow自然语言处理》一书中的第1章,第1.1节,[澳] 图珊·加内格达拉(Thushan Ganegedara) 著 马恩驰 陆 健 译。
- 一、引言在人工智能领域,尤其是自然语言处理(NLP)和机器学习(ML)的快速发展下,大模型如GPT-3、BERT等逐渐展现出强大的文本生成和理解能力。然而,当面对复杂推理问题时,这些大模型有时会显得力不从心。为了解决这个问题,研究人员提出了一种新的技术——COT思维链(Chain of Thought,简称COT)。本文将详细介绍COT思维链的概念,以及它如何帮助大模型进行更有效的推理。 ... 一、引言在人工智能领域,尤其是自然语言处理(NLP)和机器学习(ML)的快速发展下,大模型如GPT-3、BERT等逐渐展现出强大的文本生成和理解能力。然而,当面对复杂推理问题时,这些大模型有时会显得力不从心。为了解决这个问题,研究人员提出了一种新的技术——COT思维链(Chain of Thought,简称COT)。本文将详细介绍COT思维链的概念,以及它如何帮助大模型进行更有效的推理。 ...
- 简介自然语言处理(Natural Language Processing, NLP)是人工智能领域的一个重要分支,它致力于让计算机能够理解、解释、处理人类语言。在NLP中,语言模型是一个关键概念,它是对语言数据的统计学建模,用于预测给定上下文中的下一个单词或字符。随着技术的不断进步,语言模型的发展与应用变得日益广泛,为我们提供了许多强大的工具和应用场景。 语言模型的发展历程1.1 统计语言... 简介自然语言处理(Natural Language Processing, NLP)是人工智能领域的一个重要分支,它致力于让计算机能够理解、解释、处理人类语言。在NLP中,语言模型是一个关键概念,它是对语言数据的统计学建模,用于预测给定上下文中的下一个单词或字符。随着技术的不断进步,语言模型的发展与应用变得日益广泛,为我们提供了许多强大的工具和应用场景。 语言模型的发展历程1.1 统计语言...
- GPTs prompts灵感库:创意无限,专业级创作指南,打造吸睛之作的秘诀 GPTs prompts灵感库:创意无限,专业级创作指南,打造吸睛之作的秘诀
上滑加载中
推荐直播
-
华为云DataArts+DWS助力企业数据治理一站式解决方案及应用实践
2024/11/27 周三 16:30-18:00
Walter.chi 华为云数据治理DTSE技术布道师
想知道数据治理项目中,数据主题域如何合理划分?数据标准及主数据标准如何制定?数仓分层模型如何合理规划?华为云DataArts+DWS助力企业数据治理项目一站式解决方案和应用实践告诉您答案!本期将从数据趋势、数据治理方案、数据治理规划及落地,案例分享四个方面来助力企业数据治理项目合理咨询规划及顺利实施。
回顾中 -
大模型+知识库(RAG):如何使能行业数智化?—华为行业数字化转型实践分享
2024/11/27 周三 19:00-20:00
华为人工智能专家史老师
本次直播,我们特别邀请了华为人工智能专家史老师,将以大模型知识库为切入点,详细揭示大模型与知识库结合的过程,并分享利用大模型+知识库(RAG)使能行业数智化转型的实践经验。
回顾中 -
2024年川渝职工软件创新应用技能竞赛·开幕式
2024/11/28 周四 09:30-10:30
华为云讲师团
数字川渝,智创未来。2024年川渝职工软件创新应用技能竞赛决赛在即,科技精英蓄势待发!直击开幕式直播现场,共同点燃科技激情!
即将直播
热门标签