- NLP文本匹配任务Text Matching [无监督训练]:SimCSE、ESimCSE、DiffCSE 项目实践 NLP文本匹配任务Text Matching [无监督训练]:SimCSE、ESimCSE、DiffCSE 项目实践
- TextBrewer:融合并改进了NLP和CV中的多种知识蒸馏技术、提供便捷快速的知识蒸馏框架、提升模型的推理速度,减少内存占用 TextBrewer:融合并改进了NLP和CV中的多种知识蒸馏技术、提供便捷快速的知识蒸馏框架、提升模型的推理速度,减少内存占用
- 从零构建医疗领域知识图谱的KBQA问答系统:其中7类实体,约3.7万实体,21万实体关系。 从零构建医疗领域知识图谱的KBQA问答系统:其中7类实体,约3.7万实体,21万实体关系。
- 基于50W携程出行攻略构建事件图谱(含码源):交通工具子图谱、订酒店吃饭事件图谱等项目构成本项目由两个部分的组成,具体包括语料的获取以及基于语料的事件挖掘两个部分,具体项目目录包括:news_spider:基于scrapy的游记采集脚本event_graph:基于依存句法与顺承模式的顺承事件抽取脚image:游记顺承事件图谱效果图 1.出行领域语料的获取语料来源:携程出行攻略时间范围:20... 基于50W携程出行攻略构建事件图谱(含码源):交通工具子图谱、订酒店吃饭事件图谱等项目构成本项目由两个部分的组成,具体包括语料的获取以及基于语料的事件挖掘两个部分,具体项目目录包括:news_spider:基于scrapy的游记采集脚本event_graph:基于依存句法与顺承模式的顺承事件抽取脚image:游记顺承事件图谱效果图 1.出行领域语料的获取语料来源:携程出行攻略时间范围:20...
- 大语言模型的预训练[6]:思维链(Chain-of-thought,CoT)定义原理详解以及在LLM上应用 大语言模型的预训练[6]:思维链(Chain-of-thought,CoT)定义原理详解以及在LLM上应用
- 大语言模型的预训练[5]:语境学习、上下文学习In-Context Learning:精调LLM、Prompt设计和打分函数(Scoring Function)设计以及ICL底层机制等原理详解 大语言模型的预训练[5]:语境学习、上下文学习In-Context Learning:精调LLM、Prompt设计和打分函数(Scoring Function)设计以及ICL底层机制等原理详解
- 大语言模型的预训练[4]:指示学习Instruction Learning详解以及和Prompt工程、ICL区别 大语言模型的预训练[4]:指示学习Instruction Learning详解以及和Prompt工程、ICL区别
- 从零开始构建一个电影知识图谱,实现KBQA智能问答[下篇]:Apache jena SPARQL endpoint及推理、KBQA问答Demo超详细教学 从零开始构建一个电影知识图谱,实现KBQA智能问答[下篇]:Apache jena SPARQL endpoint及推理、KBQA问答Demo超详细教学
- 从零开始构建一个电影知识图谱,实现KBQA智能问答[上篇]:本体建模、RDF、D2RQ、SPARQL endpoint与两种交互方式详细教学 从零开始构建一个电影知识图谱,实现KBQA智能问答[上篇]:本体建模、RDF、D2RQ、SPARQL endpoint与两种交互方式详细教学
- 文档抽取任务Label Studio使用指南1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务、PDF、表格、图片抽取标注等3.基于Label studio的训练数据标注指南:文本分类任务4.基于Label studio的训练数据标注指南:情感分析任务观点词抽取、属性抽取目录1... 文档抽取任务Label Studio使用指南1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务、PDF、表格、图片抽取标注等3.基于Label studio的训练数据标注指南:文本分类任务4.基于Label studio的训练数据标注指南:情感分析任务观点词抽取、属性抽取目录1...
- 1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等 1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等
- 3.基于Label studio的训练数据标注指南:文本分类任务 3.基于Label studio的训练数据标注指南:文本分类任务
- 推荐系统[四]:精排-详解排序算法LTR (Learning to Rank)_ poitwise, pairwise, listwise相关评价指标,超详细知识指南。 推荐系统[四]:精排-详解排序算法LTR (Learning to Rank)_ poitwise, pairwise, listwise相关评价指标,超详细知识指南。
- 推荐系统[三]:粗排算法常用模型汇总(集合选择和精准预估),技术发展历史(向量內积,Wide&Deep等模型)以及前沿技术 推荐系统[三]:粗排算法常用模型汇总(集合选择和精准预估),技术发展历史(向量內积,Wide&Deep等模型)以及前沿技术
- 推荐系统[二]:召回算法超详细讲解[召回模型演化过程、召回模型主流常见算法(DeepMF_TDM_Airbnb Embedding_Item2vec等)、召回路径简介、多路召回融合].md 推荐系统[二]:召回算法超详细讲解[召回模型演化过程、召回模型主流常见算法(DeepMF_TDM_Airbnb Embedding_Item2vec等)、召回路径简介、多路召回融合].md
上滑加载中
推荐直播
-
OpenHarmony应用开发之网络数据请求与数据解析
2025/01/16 周四 19:00-20:30
华为开发者布道师、南京师范大学泰州学院副教授,硕士研究生导师,开放原子教育银牌认证讲师
科技浪潮中,鸿蒙生态强势崛起,OpenHarmony开启智能终端无限可能。当下,其原生应用开发适配潜力巨大,终端设备已广泛融入生活各场景,从家居到办公、穿戴至车载。 现在,机会敲门!我们的直播聚焦OpenHarmony关键的网络数据请求与解析,抛开晦涩理论,用真实案例带你掌握数据访问接口,轻松应对复杂网络请求、精准解析Json与Xml数据。参与直播,为开发鸿蒙App夯实基础,抢占科技新高地,别错过!
回顾中 -
Ascend C高层API设计原理与实现系列
2025/01/17 周五 15:30-17:00
Ascend C 技术专家
以LayerNorm算子开发为例,讲解开箱即用的Ascend C高层API
回顾中
热门标签