- 1.深度学习概述包括深度学习与机器学习区别、深度学习应用场景、深度学习框架介绍、项目演示、开发环境搭建(pycharm安装)。2. TensorFlow基础涵盖TF数据流图、TensorFlow实现加法运算、图与TensorBoard(图结构、图相关操作、默认图、创建图、OP)、张量(张量概念、张量的阶、张量数学运算)、变量OP(创建变量)、增加其他功能(命名空间、模型保存与加 1.深度学习概述包括深度学习与机器学习区别、深度学习应用场景、深度学习框架介绍、项目演示、开发环境搭建(pycharm安装)。2. TensorFlow基础涵盖TF数据流图、TensorFlow实现加法运算、图与TensorBoard(图结构、图相关操作、默认图、创建图、OP)、张量(张量概念、张量的阶、张量数学运算)、变量OP(创建变量)、增加其他功能(命名空间、模型保存与加
- ProxylessNAS:直接在目标任务和硬件上进行神经架构搜索Cai H, Zhu L, Han S. Proxylessnas: Direct neural architecture search on target task and hardware[J]. arXiv preprint arXiv:1812.00332, 2018. 第一章 引言与研究背景神经架构搜索(NAS)在自... ProxylessNAS:直接在目标任务和硬件上进行神经架构搜索Cai H, Zhu L, Han S. Proxylessnas: Direct neural architecture search on target task and hardware[J]. arXiv preprint arXiv:1812.00332, 2018. 第一章 引言与研究背景神经架构搜索(NAS)在自...
- μNAS:面向微控制器的约束神经架构搜索Liberis E, Dudziak Ł, Lane N D. μnas: Constrained neural architecture search for microcontrollers[C]//Proceedings of the 1st Workshop on Machine Learning and Systems. 2021: 70-... μNAS:面向微控制器的约束神经架构搜索Liberis E, Dudziak Ł, Lane N D. μnas: Constrained neural architecture search for microcontrollers[C]//Proceedings of the 1st Workshop on Machine Learning and Systems. 2021: 70-...
- CMSIS-NN:ARM Cortex-M处理器的高效神经网络内核Lai L, Suda N, Chandra V. Cmsis-nn: Efficient neural network kernels for arm cortex-m cpus[J]. arXiv preprint arXiv:1801.06601, 2018. 引言与背景物联网设备正在快速增长,预计到2035年将在各个... CMSIS-NN:ARM Cortex-M处理器的高效神经网络内核Lai L, Suda N, Chandra V. Cmsis-nn: Efficient neural network kernels for arm cortex-m cpus[J]. arXiv preprint arXiv:1801.06601, 2018. 引言与背景物联网设备正在快速增长,预计到2035年将在各个...
- MCUNetV2:面向微型深度学习的内存高效分块推理方法Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. 2021. MCUNetV2: memory-efficient patch-based inference for tiny deep learning. In Proceedings of the 35th Inte... MCUNetV2:面向微型深度学习的内存高效分块推理方法Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. 2021. MCUNetV2: memory-efficient patch-based inference for tiny deep learning. In Proceedings of the 35th Inte...
- 随着人工智能(AI)的快速发展,AI Agent(智能体)在分布式系统、社交网络、物联网以及多智能体协作系统中的应用日益广泛。复杂网络环境下,节点间交互频繁、关系动态变化,传统的集中式学习方式难以应对这种高动态性和不确定性。因此,研究 AI Agent的自组织学习与适应机制 具有重要意义。 随着人工智能(AI)的快速发展,AI Agent(智能体)在分布式系统、社交网络、物联网以及多智能体协作系统中的应用日益广泛。复杂网络环境下,节点间交互频繁、关系动态变化,传统的集中式学习方式难以应对这种高动态性和不确定性。因此,研究 AI Agent的自组织学习与适应机制 具有重要意义。
- 1.深度学习概述包括深度学习与机器学习区别、深度学习应用场景、深度学习框架介绍、项目演示、开发环境搭建(pycharm安装)。2. TensorFlow基础涵盖TF数据流图、TensorFlow实现加法运算、图与TensorBoard(图结构、图相关操作、默认图、创建图、OP)、张量(张量概念、张量的阶、张量数学运算)、变量OP(创建变量)、增加其他功能(命名空间、模型保存与加 1.深度学习概述包括深度学习与机器学习区别、深度学习应用场景、深度学习框架介绍、项目演示、开发环境搭建(pycharm安装)。2. TensorFlow基础涵盖TF数据流图、TensorFlow实现加法运算、图与TensorBoard(图结构、图相关操作、默认图、创建图、OP)、张量(张量概念、张量的阶、张量数学运算)、变量OP(创建变量)、增加其他功能(命名空间、模型保存与加
- 1.算法运行效果图预览(完整程序运行后无水印) 2.算法运行软件版本程序运行配置环境: 人工智能算法python程序运行环境安装步骤整理-CSDN博客 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) # 使用mediapipe进行姿态检测的函数# frame是输入的视频帧,pose是姿态检测对象def mediapipe_detect(frame, pose): im... 1.算法运行效果图预览(完整程序运行后无水印) 2.算法运行软件版本程序运行配置环境: 人工智能算法python程序运行环境安装步骤整理-CSDN博客 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频) # 使用mediapipe进行姿态检测的函数# frame是输入的视频帧,pose是姿态检测对象def mediapipe_detect(frame, pose): im...
- 深度学习不再高冷:openEuler下的DL项目实战分享 深度学习不再高冷:openEuler下的DL项目实战分享
- 涵盖图像识别背景、目标检测定义和应用场景。核心算法原理包括R-CNN系列算法(R-CNN、SPPNet、Faster R-CNN、RPN原理)、YOLO算法(单次检测、候选框机制、单元格概念)以及SSD算法(单次多框检测器、多个Detector & classifier、训练与测试流程)。数据处理模块包含目标数据集标记、数据集格式转换(TFRecords文件、VOC2007数据 涵盖图像识别背景、目标检测定义和应用场景。核心算法原理包括R-CNN系列算法(R-CNN、SPPNet、Faster R-CNN、RPN原理)、YOLO算法(单次检测、候选框机制、单元格概念)以及SSD算法(单次多框检测器、多个Detector & classifier、训练与测试流程)。数据处理模块包含目标数据集标记、数据集格式转换(TFRecords文件、VOC2007数据
- 情感分析(Sentiment Analysis)是自然语言处理(NLP)与计算机视觉(CV)中一项重要任务。传统的情感分析主要依赖于文本数据,但在现实应用中,情感往往通过 语言、语音、表情、姿态 等多模态信号共同传达。因此,结合 多模态深度学习 的 AI Agent 在情感理解中具有广阔的前景。 本文将探讨AI Agent如何在多模态情感分析中建模,并通过深度学习方法实现高效的情感识别。 情感分析(Sentiment Analysis)是自然语言处理(NLP)与计算机视觉(CV)中一项重要任务。传统的情感分析主要依赖于文本数据,但在现实应用中,情感往往通过 语言、语音、表情、姿态 等多模态信号共同传达。因此,结合 多模态深度学习 的 AI Agent 在情感理解中具有广阔的前景。 本文将探讨AI Agent如何在多模态情感分析中建模,并通过深度学习方法实现高效的情感识别。
- 1.深度学习概述包括深度学习与机器学习区别、深度学习应用场景、深度学习框架介绍、项目演示、开发环境搭建(pycharm安装)。2. TensorFlow基础涵盖TF数据流图、TensorFlow实现加法运算、图与TensorBoard(图结构、图相关操作、默认图、创建图、OP)、张量(张量概念、张量的阶、张量数学运算)、变量OP(创建变量)、增加其他功能(命名空间、模型保存与加 1.深度学习概述包括深度学习与机器学习区别、深度学习应用场景、深度学习框架介绍、项目演示、开发环境搭建(pycharm安装)。2. TensorFlow基础涵盖TF数据流图、TensorFlow实现加法运算、图与TensorBoard(图结构、图相关操作、默认图、创建图、OP)、张量(张量概念、张量的阶、张量数学运算)、变量OP(创建变量)、增加其他功能(命名空间、模型保存与加
- AI时代的新底座:openEuler的人工智能探索 AI时代的新底座:openEuler的人工智能探索
- 在卷积神经网络(CNN)中,激活函数层通过引入非线性变换,使模型能够学习复杂的数据模式(如图像中的边缘、纹理组合等)。没有激活函数,CNN将退化为线性模型,无法解决非线性问题。以下是CNN中常用的激活函数及其特性、应用场景和代码示例的详细解析: 1. 为什么需要激活函数?线性模型的局限性:若仅使用卷积层和全连接层(均为线性变换),堆叠多层网络仍等价于单层线性模型(如 y = W_n...W_... 在卷积神经网络(CNN)中,激活函数层通过引入非线性变换,使模型能够学习复杂的数据模式(如图像中的边缘、纹理组合等)。没有激活函数,CNN将退化为线性模型,无法解决非线性问题。以下是CNN中常用的激活函数及其特性、应用场景和代码示例的详细解析: 1. 为什么需要激活函数?线性模型的局限性:若仅使用卷积层和全连接层(均为线性变换),堆叠多层网络仍等价于单层线性模型(如 y = W_n...W_...
- 随着金融市场的高度复杂化与波动性增加,传统的单一预测方法(如时间序列模型、技术指标分析)往往难以应对多维度的信息流。而人工智能代理(AI Agent)凭借其跨模型的自适应学习能力,逐渐成为金融预测中的核心手段。本文探讨 AI Agent如何融合多种算法(深度学习、强化学习、集成学习等),并通过优化机制提升市场预测的准确率与鲁棒性。 随着金融市场的高度复杂化与波动性增加,传统的单一预测方法(如时间序列模型、技术指标分析)往往难以应对多维度的信息流。而人工智能代理(AI Agent)凭借其跨模型的自适应学习能力,逐渐成为金融预测中的核心手段。本文探讨 AI Agent如何融合多种算法(深度学习、强化学习、集成学习等),并通过优化机制提升市场预测的准确率与鲁棒性。
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签