- 学习总结 (1)task4主要是前后端基础及交互(前端、flask、后端请求逻辑)。 (2)Web前端网页:由文字、图像、超链接、音频、视频以及Flash等元素构成;Web标准有三层结构,分别是结构(... 学习总结 (1)task4主要是前后端基础及交互(前端、flask、后端请求逻辑)。 (2)Web前端网页:由文字、图像、超链接、音频、视频以及Flash等元素构成;Web标准有三层结构,分别是结构(...
- 学习总结 (1)五种主流的推荐模型离线评估方法:Holdout 检验、交叉检验、自助法、时间切割和离线 Replay。Holdout 检验最简单常用,它通过随机划分的方式把样本集划分成训练集和测试集。而... 学习总结 (1)五种主流的推荐模型离线评估方法:Holdout 检验、交叉检验、自助法、时间切割和离线 Replay。Holdout 检验最简单常用,它通过随机划分的方式把样本集划分成训练集和测试集。而...
- 学习总结 (1)DeepFM 模型在解决特征交叉问题上非常有优势,它会使用一个独特的 FM 层来专门处理特征之间的交叉问题。具体来说,就是使用点积、元素积等操作让不同特征之间进行两两组合,再把组合后的结... 学习总结 (1)DeepFM 模型在解决特征交叉问题上非常有优势,它会使用一个独特的 FM 层来专门处理特征之间的交叉问题。具体来说,就是使用点积、元素积等操作让不同特征之间进行两两组合,再把组合后的结...
- 学习总结 (1)深度推荐模型的前沿趋势,强化学习(Reinforcement Learning,又叫增强学习)与深度推荐模型的结合。强化学习的大体过程:通过训练一个智能体(它与环境交互,不断学习并强化自... 学习总结 (1)深度推荐模型的前沿趋势,强化学习(Reinforcement Learning,又叫增强学习)与深度推荐模型的结合。强化学习的大体过程:通过训练一个智能体(它与环境交互,不断学习并强化自...
- 第30届国际信息与知识管理大会(The 30th ACM International Conference on Information and Knowledge Management, CIKM 20... 第30届国际信息与知识管理大会(The 30th ACM International Conference on Information and Knowledge Management, CIKM 20...
- 学习心得 (1)首先学习了经典推荐算法协同过滤的深度学习进化版本 NerualCF。相比于矩阵分解算法,NeuralCF 用一个多层的神经网络,替代了矩阵分解算法中简单的点积操作,让用户和物品隐向量之间... 学习心得 (1)首先学习了经典推荐算法协同过滤的深度学习进化版本 NerualCF。相比于矩阵分解算法,NeuralCF 用一个多层的神经网络,替代了矩阵分解算法中简单的点积操作,让用户和物品隐向量之间...
- 学习总结 (1)业界主流的模型服务方法有 4 种,分别是预存推荐结果或 Embeding 结果、预训练 Embeding+ 轻量级线上模型、利用 PMML 转换和部署模型以及 TensorFlow Se... 学习总结 (1)业界主流的模型服务方法有 4 种,分别是预存推荐结果或 Embeding 结果、预训练 Embeding+ 轻量级线上模型、利用 PMML 转换和部署模型以及 TensorFlow Se...
- 学习总结 (1)GraphSAGE 的主要步骤是三步“采样 - 聚合 - 预测”: 采样是指在整体图数据上随机确定中心节点,采样 k 阶子图样本。聚合是指利用 GNN 把 k 阶子图样本聚合成中心节点... 学习总结 (1)GraphSAGE 的主要步骤是三步“采样 - 聚合 - 预测”: 采样是指在整体图数据上随机确定中心节点,采样 k 阶子图样本。聚合是指利用 GNN 把 k 阶子图样本聚合成中心节点...
- 学习总结 本次task学习深度学习模型系统的整体脉络,改进网络模型的常用手段:改变神经网络的复杂程度、改变特征交叉方式、把多种模型组合应用、结合交叉领域(如NLP、强化学习等)。整个深度学习推荐模型的演... 学习总结 本次task学习深度学习模型系统的整体脉络,改进网络模型的常用手段:改变神经网络的复杂程度、改变特征交叉方式、把多种模型组合应用、结合交叉领域(如NLP、强化学习等)。整个深度学习推荐模型的演...
- 学习心得 (1)从之前的开篇了解推荐系统要解决的核心问题,生发出深度学习推荐系统的技术,架构篇的学习是从抽象到具体,从形而上到形而下的过程。这个task先把Sparrow推荐系统跑通,一开始IDEA识别... 学习心得 (1)从之前的开篇了解推荐系统要解决的核心问题,生发出深度学习推荐系统的技术,架构篇的学习是从抽象到具体,从形而上到形而下的过程。这个task先把Sparrow推荐系统跑通,一开始IDEA识别...
- 学习总结 上次学习的一坨推荐系统的离线评估指标和方法,离线评估不能还原线上的所有变量,如视频网站需要提高的【用户观看时长】指标等。几乎所有的互联网公司,线上 A/B 测试都是验证新模型、新功能、新产品是... 学习总结 上次学习的一坨推荐系统的离线评估指标和方法,离线评估不能还原线上的所有变量,如视频网站需要提高的【用户观看时长】指标等。几乎所有的互联网公司,线上 A/B 测试都是验证新模型、新功能、新产品是...
- 学习总结 第一步是导入 Spark 分割好的训练集和测试集。 第二步是在 TensorFlow 中设置评估指标,再在测试集上调用 model.evaluate 函数计算这些评估指标。这里使用了最常用的 ... 学习总结 第一步是导入 Spark 分割好的训练集和测试集。 第二步是在 TensorFlow 中设置评估指标,再在测试集上调用 model.evaluate 函数计算这些评估指标。这里使用了最常用的 ...
- 学习总结 (1)这次task的模型看似没啥新东西(embedding+MLP),但是对于tensorflow不熟悉,还有需要注意特征处理:类别型特征 Embedding 化,数值型特征直接输入 MLP。... 学习总结 (1)这次task的模型看似没啥新东西(embedding+MLP),但是对于tensorflow不熟悉,还有需要注意特征处理:类别型特征 Embedding 化,数值型特征直接输入 MLP。...
- 学习总结 (1)上一个task我们提到用embedding召回,快速过滤商品,缩小候选集。但是embedding相似度如果都用余弦计算,当数据量很大时计算量很大。所以提出用【局部敏感哈希LSH】解决高维... 学习总结 (1)上一个task我们提到用embedding召回,快速过滤商品,缩小候选集。但是embedding相似度如果都用余弦计算,当数据量很大时计算量很大。所以提出用【局部敏感哈希LSH】解决高维...
- 学习总结 YouTube推荐架构=召回层(多,快)+排序层(少,精)。候选集生成模型:用了Embedding MLP,注意最后的多分类的输出层,预测的是用户点击了“哪个”视频。线上服务时,需要从输出层提... 学习总结 YouTube推荐架构=召回层(多,快)+排序层(少,精)。候选集生成模型:用了Embedding MLP,注意最后的多分类的输出层,预测的是用户点击了“哪个”视频。线上服务时,需要从输出层提...
上滑加载中
推荐直播
-
计算机核心课程贯通式实践教学体系介绍
2025/01/05 周日 09:00-12:00
华为开发者布道师、湖南大学二级教授、博士生导师赵欢
1月5日上午,华为开发者布道师直播间将迎来重磅嘉宾!赵欢老师,计算机教育创新先锋,其 “小而全系统” 教学方案重塑计算机类专业课程与实践,融合鲲鹏生态技术知识,斩获国家级教学成果奖。杨科华老师专注小型全系统实践,在香橙派鲲鹏 Pro 开发板构建精妙 mini 系统,带您直击计算机底层奥秘。还有香橙派系统开发部李博经理,精通开发板硬件与应用,将全方位揭秘开发板使用及 FPGA 开发实战案例。三位大咖齐聚,为高校师生开启计算机系统能力提升的知识宝库,精彩即将上线,速速预约!
回顾中 -
GaussDB数据库介绍
2025/01/07 周二 16:00-18:00
Steven 华为云学堂技术讲师
本期直播将介绍GaussDB数据库的发展历程、优势、架构、关键特性和部署模式等,旨在帮助开发者了解GaussDB数据库,并通过手把手实验教大家如何在华为云部署GaussDB数据库和使用gsql连接GaussDB数据库。
去报名 -
DTT年度收官盛典:华为开发者空间大咖汇,共探云端开发创新
2025/01/08 周三 16:30-18:00
Yawei 华为云开发工具和效率首席专家 Edwin 华为开发者空间产品总监
数字化转型进程持续加速,驱动着技术革新发展,华为开发者空间如何巧妙整合鸿蒙、昇腾、鲲鹏等核心资源,打破平台间的壁垒,实现跨平台协同?在科技迅猛发展的今天,开发者们如何迅速把握机遇,实现高效、创新的技术突破?DTT 年度收官盛典,将与大家共同探索华为开发者空间的创新奥秘。
去报名
热门标签