- 前言 博主在之前的文章中介绍过使用keras搭建一个基于矩阵分解的推荐系统,而那篇文章所介绍的方法可能只是一个庞大推荐系统中的一小环节。而对于工业级别的推荐系统,面对极其庞大的产品种类数量,一步就输出符合用户心意的产品可能够呛,最好的方式应该是从巨大的产品类别之中粗筛出一些靠谱的待推荐产品,然后再从粗筛的产品中精挑细选出要推荐给用户的... 前言 博主在之前的文章中介绍过使用keras搭建一个基于矩阵分解的推荐系统,而那篇文章所介绍的方法可能只是一个庞大推荐系统中的一小环节。而对于工业级别的推荐系统,面对极其庞大的产品种类数量,一步就输出符合用户心意的产品可能够呛,最好的方式应该是从巨大的产品类别之中粗筛出一些靠谱的待推荐产品,然后再从粗筛的产品中精挑细选出要推荐给用户的...
- 今天笔者将简要介绍一下后bert 时代中一个又一比较重要的预训练的语言模型——XLNET ,下图是XLNET在中文问答数据集CMRC 2018数据集(哈工大讯飞联合实验室发布的中文机器阅读理解数据,形式与SQuAD相同)上的表现。我们可以看到XLNET的实力略胜于BERT。 XLNET 的一些表现 这里笔者会先简... 今天笔者将简要介绍一下后bert 时代中一个又一比较重要的预训练的语言模型——XLNET ,下图是XLNET在中文问答数据集CMRC 2018数据集(哈工大讯飞联合实验室发布的中文机器阅读理解数据,形式与SQuAD相同)上的表现。我们可以看到XLNET的实力略胜于BERT。 XLNET 的一些表现 这里笔者会先简...
- 前言 最近在读论文的的过程中接触到多标签分类(multi-label classification)的任务,必须要强调的是多标签(multi-label)分类任务 和 多分类(multi-class)任务的区别: 多标签分类任务指的是一条数据可能有一个或者多个标签,举个例子:比如一个病人的体检报告,它可能被标记上,高血压,高血糖... 前言 最近在读论文的的过程中接触到多标签分类(multi-label classification)的任务,必须要强调的是多标签(multi-label)分类任务 和 多分类(multi-class)任务的区别: 多标签分类任务指的是一条数据可能有一个或者多个标签,举个例子:比如一个病人的体检报告,它可能被标记上,高血压,高血糖...
- 前言 不知道大家研究过没有,tensorflow模型有三种保存方式: 训练时我们会一般会将模型保存成:checkpoint文件 为了方便python,C++或者其他语言部署你的模型,你可以将模型保存成一个既包含网络结构又包含权重参数的:PB文件 为了方便使用TensorFlow Serving 部署你的模型,你可以将模型保存... 前言 不知道大家研究过没有,tensorflow模型有三种保存方式: 训练时我们会一般会将模型保存成:checkpoint文件 为了方便python,C++或者其他语言部署你的模型,你可以将模型保存成一个既包含网络结构又包含权重参数的:PB文件 为了方便使用TensorFlow Serving 部署你的模型,你可以将模型保存...
- 命名体识别(Name Entity Recognition)是自然语言处理(Nature Language Processing)领域中比较重要的一个任务,几乎百分之50的和文本处理有关的项目中都会涉及到命名体识别。笔者认为其中最关键的原因是:从广义的角度来讲,如果把一句话比作一串珍珠的话,命名实体就是这串珍珠项链中的珍珠,句子的其他部... 命名体识别(Name Entity Recognition)是自然语言处理(Nature Language Processing)领域中比较重要的一个任务,几乎百分之50的和文本处理有关的项目中都会涉及到命名体识别。笔者认为其中最关键的原因是:从广义的角度来讲,如果把一句话比作一串珍珠的话,命名实体就是这串珍珠项链中的珍珠,句子的其他部...
- Attention技术在 NLP 模型中几乎已经成了不可或缺的重要组成部分,最早Attention主要应用在机器翻译中起到了文本对齐的作用,比如下图,Attention 矩阵会将 法语的 La Syrie 和英语的 Syrie 对齐,Attention 机制极大的提升了机器翻译模型的性能。 attention 文本对齐 而最近... Attention技术在 NLP 模型中几乎已经成了不可或缺的重要组成部分,最早Attention主要应用在机器翻译中起到了文本对齐的作用,比如下图,Attention 矩阵会将 法语的 La Syrie 和英语的 Syrie 对齐,Attention 机制极大的提升了机器翻译模型的性能。 attention 文本对齐 而最近...
- 今天我们来做NLP(自然语言处理)中Sequence2Sequence的任务。其中Sequence2Sequence任务在生活中最常见的应用场景就是机器翻译。除了机器翻译之外,现在很流行的对话机器人任务,摘要生成任务都是典型的Sequence2Sequence。Sequence2Sequence的难点在于模型需要干两件比较难的事情: ... 今天我们来做NLP(自然语言处理)中Sequence2Sequence的任务。其中Sequence2Sequence任务在生活中最常见的应用场景就是机器翻译。除了机器翻译之外,现在很流行的对话机器人任务,摘要生成任务都是典型的Sequence2Sequence。Sequence2Sequence的难点在于模型需要干两件比较难的事情: ...
- 当今这个信息爆炸的社会,每个人都会面对无数的商品,无数的选择。而推荐算法的目的帮助大家解决选择困难症的问题,在大千世界中推荐专属于你的商品。 推荐系统算法简介 这里简单介绍下推荐系统中最为主要的协同过滤算法,大致分为如下几类: 基于用户的协同过滤(给用户推荐与他相似的人购买的物品) 基于商品的协同过滤(给用户推荐和他之前喜欢... 当今这个信息爆炸的社会,每个人都会面对无数的商品,无数的选择。而推荐算法的目的帮助大家解决选择困难症的问题,在大千世界中推荐专属于你的商品。 推荐系统算法简介 这里简单介绍下推荐系统中最为主要的协同过滤算法,大致分为如下几类: 基于用户的协同过滤(给用户推荐与他相似的人购买的物品) 基于商品的协同过滤(给用户推荐和他之前喜欢...
- 情感分析(Sentiment Analysis)是自然语言处理里面比较高阶的任务之一。仔细思考一下,这个任务的究极目标其实是想让计算机理解人类的情感世界。我们自己都不一定能完全控制和了解自己的情感,更别说机器了。 不过在人工智能的认知智能阶段(人工智能三阶段——计算智能,感知智能,认知智能),商家还是可以用它来做一些商品或服务的评论分... 情感分析(Sentiment Analysis)是自然语言处理里面比较高阶的任务之一。仔细思考一下,这个任务的究极目标其实是想让计算机理解人类的情感世界。我们自己都不一定能完全控制和了解自己的情感,更别说机器了。 不过在人工智能的认知智能阶段(人工智能三阶段——计算智能,感知智能,认知智能),商家还是可以用它来做一些商品或服务的评论分...
- Capsule是深度学习之父hinton在2017年提出来的一个较为轰动的网络结构。capsule这个结构主要的特点是:Vector in Vector out——向量进,向量出,而普通的神经元(Neuron)是Vector in Scalar out——向量进,标量出。capsule输出的向量比Neuron输出的标量表达出更丰富的特征... Capsule是深度学习之父hinton在2017年提出来的一个较为轰动的网络结构。capsule这个结构主要的特点是:Vector in Vector out——向量进,向量出,而普通的神经元(Neuron)是Vector in Scalar out——向量进,标量出。capsule输出的向量比Neuron输出的标量表达出更丰富的特征...
- 文本预处理 Tokenizer(分词器) keras.preprocessing.text.Tokenizer(num_words=None, ... 文本预处理 Tokenizer(分词器) keras.preprocessing.text.Tokenizer(num_words=None, ...
- 前言: 本专栏在保证内容完整性的基础上,力求简洁,旨在让初学者能够更快地、高效地入门TensorFlow2 深度学习框架。如果觉得本专栏对您有帮助的话,可以给一个小小的三连,各位的支持将是我创作的最大动力! 系列文章汇总:TensorFlow2 入门指南 Github项目地址:https://github.com/Keyird/TensorFlow2-for-beg... 前言: 本专栏在保证内容完整性的基础上,力求简洁,旨在让初学者能够更快地、高效地入门TensorFlow2 深度学习框架。如果觉得本专栏对您有帮助的话,可以给一个小小的三连,各位的支持将是我创作的最大动力! 系列文章汇总:TensorFlow2 入门指南 Github项目地址:https://github.com/Keyird/TensorFlow2-for-beg...
- keras基础实例 电影评价预测 导入数据集 import keras from keras import layers import matplotlib.pyplot as plt %matplotlib inline data = keras.datasets.imdb max_word = 10000 # 加载前10000个单词 最大不超过10000 (x... keras基础实例 电影评价预测 导入数据集 import keras from keras import layers import matplotlib.pyplot as plt %matplotlib inline data = keras.datasets.imdb max_word = 10000 # 加载前10000个单词 最大不超过10000 (x...
- 导入手写数字识别 import keras from keras import layers import matplotlib.pyplot as plt %matplotlib inline import keras.datasets.mnist as mnist (train_image, train_label), (test_image, test_labe... 导入手写数字识别 import keras from keras import layers import matplotlib.pyplot as plt %matplotlib inline import keras.datasets.mnist as mnist (train_image, train_label), (test_image, test_labe...
- 什么是预训练网络 一个常用、高效的在小图像数据集上深度学习的方法就是利用预训练网络。一个预训练网络只是简单的储存了之前在大的数据集训练的结果,通常是大的图像分类任务。如果原始的数据集已经足够大,足够一般,通过预训练学习到的空间上的特征层次结构就能有效地在我们的模型中工作,因此这些特征对许多计算机视觉问题都很有用,尽管这些新问题和原任务相比可能涉及完全不同的类别。 K... 什么是预训练网络 一个常用、高效的在小图像数据集上深度学习的方法就是利用预训练网络。一个预训练网络只是简单的储存了之前在大的数据集训练的结果,通常是大的图像分类任务。如果原始的数据集已经足够大,足够一般,通过预训练学习到的空间上的特征层次结构就能有效地在我们的模型中工作,因此这些特征对许多计算机视觉问题都很有用,尽管这些新问题和原任务相比可能涉及完全不同的类别。 K...
上滑加载中
推荐直播
-
GaussDB数据库介绍
2025/01/07 周二 16:00-18:00
Steven 华为云学堂技术讲师
本期直播将介绍GaussDB数据库的发展历程、优势、架构、关键特性和部署模式等,旨在帮助开发者了解GaussDB数据库,并通过手把手实验教大家如何在华为云部署GaussDB数据库和使用gsql连接GaussDB数据库。
去报名 -
DTT年度收官盛典:华为开发者空间大咖汇,共探云端开发创新
2025/01/08 周三 16:30-18:00
Yawei 华为云开发工具和效率首席专家 Edwin 华为开发者空间产品总监
数字化转型进程持续加速,驱动着技术革新发展,华为开发者空间如何巧妙整合鸿蒙、昇腾、鲲鹏等核心资源,打破平台间的壁垒,实现跨平台协同?在科技迅猛发展的今天,开发者们如何迅速把握机遇,实现高效、创新的技术突破?DTT 年度收官盛典,将与大家共同探索华为开发者空间的创新奥秘。
去报名 -
GaussDB应用实战:手把手带你写SQL
2025/01/09 周四 16:00-18:00
Steven 华为云学堂技术讲师
本期直播将围绕数据库中常用的数据类型、数据库对象、系统函数及操作符等内容展开介绍,帮助初学者掌握SQL入门级的基础语法。同时在线手把手教你写好SQL。
去报名
热门标签