- ModelBox开发案例 - 体感小游戏前段时间,小鱼老师在AI说发布了文章 ModelBox推理真的高效吗,里面介绍了双阶段单人人体关键点检测案例,运行速度超快:使用原生的ONNXRuntime API做开发,可以达到36fps;而ModelBox版本(推理框架同样是ONNXRuntime),更是达到了接近80fps!于是乎,笔者产生了一个大胆的想法:这么快的人体关键点检测应用,不用来跑... ModelBox开发案例 - 体感小游戏前段时间,小鱼老师在AI说发布了文章 ModelBox推理真的高效吗,里面介绍了双阶段单人人体关键点检测案例,运行速度超快:使用原生的ONNXRuntime API做开发,可以达到36fps;而ModelBox版本(推理框架同样是ONNXRuntime),更是达到了接近80fps!于是乎,笔者产生了一个大胆的想法:这么快的人体关键点检测应用,不用来跑...
- ModelBox开发案例 - 使用OpenPose做多人人体关键点检测本案例将使用OpenPose模型,实现一个多人人体关键点检测应用,最终效果如下所示:本案例所需资源(代码、模型、测试数据等)已做成模板放到华为云上,查看和下载模板可以使用如下命令:Windows PC版本请使用solution.bat工具:PS ███\modelbox>: .\solution.bat -l...Sol... ModelBox开发案例 - 使用OpenPose做多人人体关键点检测本案例将使用OpenPose模型,实现一个多人人体关键点检测应用,最终效果如下所示:本案例所需资源(代码、模型、测试数据等)已做成模板放到华为云上,查看和下载模板可以使用如下命令:Windows PC版本请使用solution.bat工具:PS ███\modelbox>: .\solution.bat -l...Sol...
- ModelBox开发案例 - 使用Lightweight OpenPose做多人人体关键点检测本案例将使用Lightweight OpenPose模型,实现一个多人人体关键点检测应用,最终效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从multi_person_pose_lightweight_openpose下载(提取码为modbox),该目录中的资源列表说明如下:desc.... ModelBox开发案例 - 使用Lightweight OpenPose做多人人体关键点检测本案例将使用Lightweight OpenPose模型,实现一个多人人体关键点检测应用,最终效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从multi_person_pose_lightweight_openpose下载(提取码为modbox),该目录中的资源列表说明如下:desc....
- ModelBox开发指南 - 展开/合并功能单元本文将使用一个多人人体关键点检测的案例,介绍ModelBox中展开/合并功能单元的特性,案例效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从multi_person_pose_yolox_alpha_pose下载(提取码为modbox),该目录中的资源列表说明如下:desc.toml # 资源描述common.zip #... ModelBox开发指南 - 展开/合并功能单元本文将使用一个多人人体关键点检测的案例,介绍ModelBox中展开/合并功能单元的特性,案例效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从multi_person_pose_yolox_alpha_pose下载(提取码为modbox),该目录中的资源列表说明如下:desc.toml # 资源描述common.zip #...
- ModelBox开发指南 - 条件功能单元本文将使用一个单人人体关键点检测的案例,介绍ModelBox中条件功能单元的特性,案例效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从single_person_pose_yolox_alpha_pose下载(提取码为modbox),该目录中的资源列表说明如下:desc.toml # 资源描述common.zip # 公共数据... ModelBox开发指南 - 条件功能单元本文将使用一个单人人体关键点检测的案例,介绍ModelBox中条件功能单元的特性,案例效果如下所示:本案例所需资源(代码、模型、测试数据等)均可从single_person_pose_yolox_alpha_pose下载(提取码为modbox),该目录中的资源列表说明如下:desc.toml # 资源描述common.zip # 公共数据...
- TSD(目标检测/Pytorch)论文名为《Revisiting the Sibling Head in Object Detector》,其提出基于任务间空间自适应解耦(task-aware spatial disentanglement,TSD)的检测算法能够有效的减弱通用物体检测中分类任务和回归任务之间的潜在冲突,可以灵活插入大多检测器中,在COCO和OpenImage上给任意bac... TSD(目标检测/Pytorch)论文名为《Revisiting the Sibling Head in Object Detector》,其提出基于任务间空间自适应解耦(task-aware spatial disentanglement,TSD)的检测算法能够有效的减弱通用物体检测中分类任务和回归任务之间的潜在冲突,可以灵活插入大多检测器中,在COCO和OpenImage上给任意bac...
- 基于协同过滤算法实现电影推荐 实验目标掌握如何使用机器学习算法全流程构建一个电影推荐系统的方案。掌握如何载入、查阅、清洗、合并用户的数据,并计算物品相似度矩阵。 案例内容介绍在本案例中,我们将会学习使用人工智能技术技术分析用户对电影的评分数据,并基于这个数据建立一个推荐系统,根据用户输入的一部感兴趣的电影,为其推荐其他可能感兴趣的电影。此案例中,我们使用的数据集是用户对电影的评分数据,包含... 基于协同过滤算法实现电影推荐 实验目标掌握如何使用机器学习算法全流程构建一个电影推荐系统的方案。掌握如何载入、查阅、清洗、合并用户的数据,并计算物品相似度矩阵。 案例内容介绍在本案例中,我们将会学习使用人工智能技术技术分析用户对电影的评分数据,并基于这个数据建立一个推荐系统,根据用户输入的一部感兴趣的电影,为其推荐其他可能感兴趣的电影。此案例中,我们使用的数据集是用户对电影的评分数据,包含...
- 基于K-means聚类算法进行客户人群分析 实验目标掌握如何通过机器学习算法进行用户群体分析;掌握如何使用pandas载入、查阅数据;掌握如何调节K-means算法的参数,来控制不同的聚类中心。 案例内容介绍在本案例中,我们使用人工智能技术的聚类算法去分析超市购物中心客户的一些基本数据,把客户分成不同的群体,供营销团队参考并相应地制定营销策略。俗话说,“物以类聚,人以群分”,聚类算法其实就... 基于K-means聚类算法进行客户人群分析 实验目标掌握如何通过机器学习算法进行用户群体分析;掌握如何使用pandas载入、查阅数据;掌握如何调节K-means算法的参数,来控制不同的聚类中心。 案例内容介绍在本案例中,我们使用人工智能技术的聚类算法去分析超市购物中心客户的一些基本数据,把客户分成不同的群体,供营销团队参考并相应地制定营销策略。俗话说,“物以类聚,人以群分”,聚类算法其实就...
- 目标检测算法套件使用指导本Notebook通过引导用户导入数据集、选择模型、训练并可视化推理,快速完成COCO数据集目标检测任务。 Step0 安装依赖包!pip install ipywidgets==7.7.1!pip install pillow==9.0.1!pip install pandas==1.3.4 Step1 加载算法、样例数据集与预训练模型完成模型的微调和探索经典的目... 目标检测算法套件使用指导本Notebook通过引导用户导入数据集、选择模型、训练并可视化推理,快速完成COCO数据集目标检测任务。 Step0 安装依赖包!pip install ipywidgets==7.7.1!pip install pillow==9.0.1!pip install pandas==1.3.4 Step1 加载算法、样例数据集与预训练模型完成模型的微调和探索经典的目...
- 4. 模型训练 4.1 导入相关的模块import osimport pandas as pdimport numpy as npimport timeimport torchfrom torch.autograd import Variableimport loggingimport copyimport argparsedevice = torch.device("cuda" if t... 4. 模型训练 4.1 导入相关的模块import osimport pandas as pdimport numpy as npimport timeimport torchfrom torch.autograd import Variableimport loggingimport copyimport argparsedevice = torch.device("cuda" if t...
- 基于LSTM的CDN网络流量预测 实验目标掌握时序预测中基础的数据分析及训练模型的基本流程;掌握时序预测中基于多线路的单元多步时序预测的基本方法;掌握使用Pytorch进行LSTM模型的构建、训练、保存、加载、预测、统计准确率指标的方法; 案例内容介绍随着互联网、云业务的迅速发展,企业运转与云服务运维产生的数据与日俱增,在实际生产中,业务的运转往往遵循着相应的规律,时序数据所能带来的价值也... 基于LSTM的CDN网络流量预测 实验目标掌握时序预测中基础的数据分析及训练模型的基本流程;掌握时序预测中基于多线路的单元多步时序预测的基本方法;掌握使用Pytorch进行LSTM模型的构建、训练、保存、加载、预测、统计准确率指标的方法; 案例内容介绍随着互联网、云业务的迅速发展,企业运转与云服务运维产生的数据与日俱增,在实际生产中,业务的运转往往遵循着相应的规律,时序数据所能带来的价值也...
- 基于随机森林算法进行硬盘故障预测 实验目标掌握使用机器学习方法训练模型的基本流程;掌握使用pandas做数据分析的基本方法;掌握使用scikit-learn进行随机森林模型的构建、训练、保存、加载、预测、统计准确率指标和查看混淆矩阵的方法; 案例内容介绍随着互联网、云计算的发展,数据的存储需求与日倍增,大规模海量数据存储中心是必不可少的基础性设施。虽然新的存储介质例如SSD,已经很多方面拥... 基于随机森林算法进行硬盘故障预测 实验目标掌握使用机器学习方法训练模型的基本流程;掌握使用pandas做数据分析的基本方法;掌握使用scikit-learn进行随机森林模型的构建、训练、保存、加载、预测、统计准确率指标和查看混淆矩阵的方法; 案例内容介绍随着互联网、云计算的发展,数据的存储需求与日倍增,大规模海量数据存储中心是必不可少的基础性设施。虽然新的存储介质例如SSD,已经很多方面拥...
- 使用生成对抗网络实现图像转换此案例使用GPU算力,请参照注意事项完成规格切换 注意事项:本案例使用AI引擎**:** TensorFlow-1.13.1本案例最低硬件规格要求**:** 类型选择GPU,目标规格选择8U + 64GiB + 1GPU切换硬件规格方法**:** 如需切换硬件规格,您可以在本页面右边的工作区进行切换运行代码方法**:** 点击本页面顶部菜单栏的三角形运行按... 使用生成对抗网络实现图像转换此案例使用GPU算力,请参照注意事项完成规格切换 注意事项:本案例使用AI引擎**:** TensorFlow-1.13.1本案例最低硬件规格要求**:** 类型选择GPU,目标规格选择8U + 64GiB + 1GPU切换硬件规格方法**:** 如需切换硬件规格,您可以在本页面右边的工作区进行切换运行代码方法**:** 点击本页面顶部菜单栏的三角形运行按...
- 8.创建模型,开始训练耗时约15分钟model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list) + 1, init_checkpoint=init_checkpoint, learning_rate=learning_rate, ... 8.创建模型,开始训练耗时约15分钟model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list) + 1, init_checkpoint=init_checkpoint, learning_rate=learning_rate, ...
- 自然语言处理实战——命名实体识别BERT模型(Bidirectional Encoder Representations from Transformers)是2018年10月谷歌推出的,它在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩,包括将GLUE基准推至80.4%(绝对改进率7.6%),Mult... 自然语言处理实战——命名实体识别BERT模型(Bidirectional Encoder Representations from Transformers)是2018年10月谷歌推出的,它在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩,包括将GLUE基准推至80.4%(绝对改进率7.6%),Mult...
上滑加载中
推荐直播
-
Ascend C算子编程之旅:基础入门篇
2024/11/22 周五 16:00-17:30
莫老师 昇腾CANN专家
介绍Ascend C算子基本概念、异构计算架构CANN和Ascend C基本概述,以及Ascend C快速入门,夯实Ascend C算子编程基础
回顾中 -
深入解析:华为全栈AI解决方案与云智能开放能力
2024/11/22 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播我们将重点为大家介绍华为全栈全场景AI解决方案以和华为云企业智能AI开放能力。旨在帮助开发者深入理解华为AI解决方案,并能够更加熟练地运用这些技术。通过洞悉华为解决方案,了解人工智能完整生态链条的构造。
回顾中 -
华为云DataArts+DWS助力企业数据治理一站式解决方案及应用实践
2024/11/27 周三 16:30-18:00
Walter.chi 华为云数据治理DTSE技术布道师
想知道数据治理项目中,数据主题域如何合理划分?数据标准及主数据标准如何制定?数仓分层模型如何合理规划?华为云DataArts+DWS助力企业数据治理项目一站式解决方案和应用实践告诉您答案!本期将从数据趋势、数据治理方案、数据治理规划及落地,案例分享四个方面来助力企业数据治理项目合理咨询规划及顺利实施。
去报名
热门标签