- 下面从大数据集需求、硬件需求、过拟合、超参数优化、不透明性、缺少灵活性这六个方面来简要说明深度学习系统所面临的挑战。4.1.1 大数据集需求在深度学习系统中,人们往往需要大型的数据集去训练一个有效的深度学习模型。一般来说,越多的数据就越有可能使深度学习模型变得更强大。例如,在语音识别领域中,为了学习一种语言,模型往往需要大量各种口音、各种时长的语音数据。这需要研究人员拥有非常强的数据处理能力... 下面从大数据集需求、硬件需求、过拟合、超参数优化、不透明性、缺少灵活性这六个方面来简要说明深度学习系统所面临的挑战。4.1.1 大数据集需求在深度学习系统中,人们往往需要大型的数据集去训练一个有效的深度学习模型。一般来说,越多的数据就越有可能使深度学习模型变得更强大。例如,在语音识别领域中,为了学习一种语言,模型往往需要大量各种口音、各种时长的语音数据。这需要研究人员拥有非常强的数据处理能力...
- 说明:随着开发迭代MindSpore的接口及流程的不断演进,书中代码仅为示意代码,完整可运行代码请大家以线上代码仓中对应章节代码为准。网址为:https://mindspore.cn/resource。读者可扫描右侧二维码获取相关资源。LeNet主要用来进行手写字符的识别与分类,并已在美国的银行中投入使用。LeNet的实现确立了卷积神经网络(CNN)的结构,现在神经网络中的许多内容在LeNe... 说明:随着开发迭代MindSpore的接口及流程的不断演进,书中代码仅为示意代码,完整可运行代码请大家以线上代码仓中对应章节代码为准。网址为:https://mindspore.cn/resource。读者可扫描右侧二维码获取相关资源。LeNet主要用来进行手写字符的识别与分类,并已在美国的银行中投入使用。LeNet的实现确立了卷积神经网络(CNN)的结构,现在神经网络中的许多内容在LeNe...
- 第1章中介绍了梯度下降算法训练回归模型,神经网络模型也一样需要使用梯度下降算法来更新参数。然而一个神经网络通常会有上百万的参数,那么如何高效地计算这百万级别的参数是需要重点考虑的问题。神经网络中使用反向传播(Backward Propagation)算法,使得计算梯度更加有效率。在介绍反向传播之前,先来介绍一下链式法则。假设有两个函数y=g(x)和z=h(y),那么z对x的求导过程如下:假设... 第1章中介绍了梯度下降算法训练回归模型,神经网络模型也一样需要使用梯度下降算法来更新参数。然而一个神经网络通常会有上百万的参数,那么如何高效地计算这百万级别的参数是需要重点考虑的问题。神经网络中使用反向传播(Backward Propagation)算法,使得计算梯度更加有效率。在介绍反向传播之前,先来介绍一下链式法则。假设有两个函数y=g(x)和z=h(y),那么z对x的求导过程如下:假设...
- 本章介绍了深度神经网络的几个相关概念,并给出了用MindSpore实现简单神经网络的样例。深度学习(Deep Learning)与传统机器学习最大的不同在于其利用神经网络对数据进行高级抽象。而最基础的神经网络结构为前向神经网络(Feed forwardNeural Network,FNN),又称多层感知机(Multi-Layer Perceptron,MLP)。在介绍多层感知机之前,先来认识... 本章介绍了深度神经网络的几个相关概念,并给出了用MindSpore实现简单神经网络的样例。深度学习(Deep Learning)与传统机器学习最大的不同在于其利用神经网络对数据进行高级抽象。而最基础的神经网络结构为前向神经网络(Feed forwardNeural Network,FNN),又称多层感知机(Multi-Layer Perceptron,MLP)。在介绍多层感知机之前,先来认识...
- 在机器学习中,过拟合(Overfitting)与欠拟合(Underfitting)都是指模型选择不能够很好地拟合数据本身,即模型过于复杂或过于简单。一个过拟合的模型往往有着比数据本身特性更多的参数,为了拟合尽可能多的数据,甚至包括一些错误的样本,这些参数会因过度拟合数据而产生一些噪声。而欠拟合与之相反,其原因是选择的参数或模型不够复杂,例如用线性模型去拟合非线性结构,显然是欠拟合的。图2.7... 在机器学习中,过拟合(Overfitting)与欠拟合(Underfitting)都是指模型选择不能够很好地拟合数据本身,即模型过于复杂或过于简单。一个过拟合的模型往往有着比数据本身特性更多的参数,为了拟合尽可能多的数据,甚至包括一些错误的样本,这些参数会因过度拟合数据而产生一些噪声。而欠拟合与之相反,其原因是选择的参数或模型不够复杂,例如用线性模型去拟合非线性结构,显然是欠拟合的。图2.7...
- 梯度下降(Gradient Descent)算法是一个一阶最优化算法,通常也称为最速下降算法。为了找到一个损失函数(或目标函数)的局部最小值,必须向函数前点对应梯度(或者近似梯度)的反方向移动适当的距离,从而实现迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部最大值点,这个相反的过程被称为梯度上升算法。本节以梯度下降算法为例进行探讨。梯度下降算法基于以下观察:如果实数函数J(... 梯度下降(Gradient Descent)算法是一个一阶最优化算法,通常也称为最速下降算法。为了找到一个损失函数(或目标函数)的局部最小值,必须向函数前点对应梯度(或者近似梯度)的反方向移动适当的距离,从而实现迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部最大值点,这个相反的过程被称为梯度上升算法。本节以梯度下降算法为例进行探讨。梯度下降算法基于以下观察:如果实数函数J(...
- 12月30日,华为云将在深圳“云原生2.0技术峰会”,本次峰会各界精英将齐聚一堂,共话云原生的前沿技术,分享行业应用实践,共同探讨“新云原生企业”的成长之道,值得关注。 12月30日,华为云将在深圳“云原生2.0技术峰会”,本次峰会各界精英将齐聚一堂,共话云原生的前沿技术,分享行业应用实践,共同探讨“新云原生企业”的成长之道,值得关注。
- 人工智能应用快速开发,ModelArts提供丰富的模板并具备一定的自动化能力,ModelArts使得开发人工智能应用更加便捷,ModelArts目前提供图像分类,目标检测,声音分类,文本分类等多种简单的模板,以及零售商品识别,OCR等复杂模板模板类型 简单模板(行业相关性较弱,包含环节数较少,业务技能要求较多,较为通用) 复杂模板(行业相关性较强,包含环节数较多,业务技能要求较少)图像... 人工智能应用快速开发,ModelArts提供丰富的模板并具备一定的自动化能力,ModelArts使得开发人工智能应用更加便捷,ModelArts目前提供图像分类,目标检测,声音分类,文本分类等多种简单的模板,以及零售商品识别,OCR等复杂模板模板类型 简单模板(行业相关性较弱,包含环节数较少,业务技能要求较多,较为通用) 复杂模板(行业相关性较强,包含环节数较多,业务技能要求较少)图像...
- 一、EAST网络介绍EAST,An Efficient and Accurate Scene Text Detector:https://arxiv.org/abs/1704.03155v2EAST做文本检测只需要两步:先是一个全卷积的网络直接产生一个字符或者文本行的预测(可以是旋转的矩形或者不规则四边形),然后通过NMS(Non-Maximum Suppression)算法合并最后的结果。... 一、EAST网络介绍EAST,An Efficient and Accurate Scene Text Detector:https://arxiv.org/abs/1704.03155v2EAST做文本检测只需要两步:先是一个全卷积的网络直接产生一个字符或者文本行的预测(可以是旋转的矩形或者不规则四边形),然后通过NMS(Non-Maximum Suppression)算法合并最后的结果。...
- 三帧差法 优点:实时性高缺点:1、运动物体本身颜色相近时,会出现较大的空洞。2、无法应对光照骤变的情况理论上:三帧差法 比 二帧差法更好一些(可在一定程度上消除帧间差分法的“双影”现象),但是也要结合实际情况而用。1. 帧差法基本原理帧差法的实现非常简单:如图可见,由目标运动引起的运动变化区域,包括运动目标在前后两帧中的共同位置(图中黑色区域)、在当前帧中新显露出的背景区域和新覆盖的背景区域... 三帧差法 优点:实时性高缺点:1、运动物体本身颜色相近时,会出现较大的空洞。2、无法应对光照骤变的情况理论上:三帧差法 比 二帧差法更好一些(可在一定程度上消除帧间差分法的“双影”现象),但是也要结合实际情况而用。1. 帧差法基本原理帧差法的实现非常简单:如图可见,由目标运动引起的运动变化区域,包括运动目标在前后两帧中的共同位置(图中黑色区域)、在当前帧中新显露出的背景区域和新覆盖的背景区域...
- 技术赋能产业生态,共创全场景智慧上海 技术赋能产业生态,共创全场景智慧上海
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签