- 使用生成对抗网络实现图像转换此案例使用GPU算力,请参照注意事项完成规格切换 注意事项:本案例使用AI引擎**:** TensorFlow-1.13.1本案例最低硬件规格要求**:** 类型选择GPU,目标规格选择8U + 64GiB + 1GPU切换硬件规格方法**:** 如需切换硬件规格,您可以在本页面右边的工作区进行切换运行代码方法**:** 点击本页面顶部菜单栏的三角形运行按... 使用生成对抗网络实现图像转换此案例使用GPU算力,请参照注意事项完成规格切换 注意事项:本案例使用AI引擎**:** TensorFlow-1.13.1本案例最低硬件规格要求**:** 类型选择GPU,目标规格选择8U + 64GiB + 1GPU切换硬件规格方法**:** 如需切换硬件规格,您可以在本页面右边的工作区进行切换运行代码方法**:** 点击本页面顶部菜单栏的三角形运行按...
- 8.创建模型,开始训练耗时约15分钟model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list) + 1, init_checkpoint=init_checkpoint, learning_rate=learning_rate, ... 8.创建模型,开始训练耗时约15分钟model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list) + 1, init_checkpoint=init_checkpoint, learning_rate=learning_rate, ...
- 自然语言处理实战——命名实体识别BERT模型(Bidirectional Encoder Representations from Transformers)是2018年10月谷歌推出的,它在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩,包括将GLUE基准推至80.4%(绝对改进率7.6%),Mult... 自然语言处理实战——命名实体识别BERT模型(Bidirectional Encoder Representations from Transformers)是2018年10月谷歌推出的,它在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩,包括将GLUE基准推至80.4%(绝对改进率7.6%),Mult...
- 自然语言处理介绍 注意事项本案例推荐使用AI引擎:TensorFlow-1.13.1本案例最低硬件规格要求:2 vCPU + 4 GiB切换硬件规格方法:如需切换硬件规格,您可以在本页面右边的工作区进行切换运行代码方法:点击本页面顶部菜单栏的三角形运行按钮或按Ctrl+Enter键 运行每个方块中的代码JupyterLab的详细用法:请参考《ModelAtrs JupyterLab使用指导... 自然语言处理介绍 注意事项本案例推荐使用AI引擎:TensorFlow-1.13.1本案例最低硬件规格要求:2 vCPU + 4 GiB切换硬件规格方法:如需切换硬件规格,您可以在本页面右边的工作区进行切换运行代码方法:点击本页面顶部菜单栏的三角形运行按钮或按Ctrl+Enter键 运行每个方块中的代码JupyterLab的详细用法:请参考《ModelAtrs JupyterLab使用指导...
- 10.语言模型训练准备训练参数及数据def language_model_hparams(): params = HParams( num_heads = 8, num_blocks = 6, input_vocab_size = 50, label_vocab_size = 50, max_length = 10... 10.语言模型训练准备训练参数及数据def language_model_hparams(): params = HParams( num_heads = 8, num_blocks = 6, input_vocab_size = 50, label_vocab_size = 50, max_length = 10...
- 7.声学模型训练准备训练参数及数据为了本示例演示效果,参数batch_size在此仅设置为1,参数data_length在此仅设置为20。若进行完整训练,则应注释data_args.data_length = 20,并调高batch_size。def data_hparams(): params = HParams( data_path = './speech_reco... 7.声学模型训练准备训练参数及数据为了本示例演示效果,参数batch_size在此仅设置为1,参数data_length在此仅设置为20。若进行完整训练,则应注释data_args.data_length = 20,并调高batch_size。def data_hparams(): params = HParams( data_path = './speech_reco...
- DFCNN + Transformer模型完成中文语音识别语音识别,通常称为自动语音识别,(Automatic Speech Recognition,ASR),主要是将人类语音中的词汇内容转换为计算机可读的输入,一般都是可以理解的文本内容,也有可能是二进制编码或者字符序列。但是,我们一般理解的语音识别其实都是狭义的语音转文字的过程,简称语音转文本识别( Speech To Text, ST... DFCNN + Transformer模型完成中文语音识别语音识别,通常称为自动语音识别,(Automatic Speech Recognition,ASR),主要是将人类语音中的词汇内容转换为计算机可读的输入,一般都是可以理解的文本内容,也有可能是二进制编码或者字符序列。但是,我们一般理解的语音识别其实都是狭义的语音转文字的过程,简称语音转文本识别( Speech To Text, ST...
- 基于 ModelArts 使用StyleGAN3 生成高清图Nvidia新作:StyleGAN3, 从根本上解决了StyleGAN2 图像坐标与特征粘连的问题,实现了真正的图像平移、旋转等不变性,大幅提高了图像合成质量本案例主要介绍了生成图像的推理过程,你可以输入一个噪声,得到对应的人脸,猫脸,肖像脸图像github地址:https://github.com/NVlabs/stylegan... 基于 ModelArts 使用StyleGAN3 生成高清图Nvidia新作:StyleGAN3, 从根本上解决了StyleGAN2 图像坐标与特征粘连的问题,实现了真正的图像平移、旋转等不变性,大幅提高了图像合成质量本案例主要介绍了生成图像的推理过程,你可以输入一个噪声,得到对应的人脸,猫脸,肖像脸图像github地址:https://github.com/NVlabs/stylegan...
- 1. 从AI Gallery订阅模型① 登录华为云账号后,将跳转至控制台页面,点击左上角服务列表按钮,下拉找到【人工智能】,再找到【ModelArts】,如下图所示,点击进入② 在ModelArts控制台页面,点击【AI Gallery】跳转到AI Gallery页面,如下两张图所示:③ 在左上角点击【资产集市】,弹出搜索框点击【模型】,在弹出窗口的搜索栏中输入【商品商超模型】,如下图所示... 1. 从AI Gallery订阅模型① 登录华为云账号后,将跳转至控制台页面,点击左上角服务列表按钮,下拉找到【人工智能】,再找到【ModelArts】,如下图所示,点击进入② 在ModelArts控制台页面,点击【AI Gallery】跳转到AI Gallery页面,如下两张图所示:③ 在左上角点击【资产集市】,弹出搜索框点击【模型】,在弹出窗口的搜索栏中输入【商品商超模型】,如下图所示...
- 语音和语音识别介绍 注意事项本案例推荐使用AI引擎:TensorFlow-1.8本案例最低硬件规格要求:2 vCPU + 4 GiB切换硬件规格方法:如需切换硬件规格,您可以在本页面右边的工作区进行切换运行代码方法:点击本页面顶部菜单栏的三角形运行按钮或按Ctrl+Enter键 运行每个方块中的代码JupyterLab的详细用法:请参考《ModelAtrs JupyterLab使用指导》K... 语音和语音识别介绍 注意事项本案例推荐使用AI引擎:TensorFlow-1.8本案例最低硬件规格要求:2 vCPU + 4 GiB切换硬件规格方法:如需切换硬件规格,您可以在本页面右边的工作区进行切换运行代码方法:点击本页面顶部菜单栏的三角形运行按钮或按Ctrl+Enter键 运行每个方块中的代码JupyterLab的详细用法:请参考《ModelAtrs JupyterLab使用指导》K...
- 视频物体分割本案例分为以下几个章节:视频物体分割简介OSVOS算法训练和预测视频物体分割的应用 1. 视频物体分割简介视频物体分割就是从视频所有图像中将感兴趣物体的区域完整地分割出来。注意“感兴趣物体”这个词,“感兴趣物体”是指在一段视频中最容易捕获人眼注意力的一个或多个物体,比如下图中左上角子图中三个正在跳舞的人,这三个人物是“感兴趣物体”,而周围的人群不属于我们常识上的感兴趣物体,下图... 视频物体分割本案例分为以下几个章节:视频物体分割简介OSVOS算法训练和预测视频物体分割的应用 1. 视频物体分割简介视频物体分割就是从视频所有图像中将感兴趣物体的区域完整地分割出来。注意“感兴趣物体”这个词,“感兴趣物体”是指在一段视频中最容易捕获人眼注意力的一个或多个物体,比如下图中左上角子图中三个正在跳舞的人,这三个人物是“感兴趣物体”,而周围的人群不属于我们常识上的感兴趣物体,下图...
- 视频动作识别 实验目标通过本案例的学习:掌握C3D模型训练和模型推理、I3D模型推理的方法; 注意事项本案例推荐使用TensorFlow-1.13.1,需使用 GPU 运行,请查看《ModelArts JupyterLab 硬件规格使用指南》了解切换硬件规格的方法;如果您是第一次使用 JupyterLab,请查看《ModelArts JupyterLab使用指导》了解使用方法;如果您在使用... 视频动作识别 实验目标通过本案例的学习:掌握C3D模型训练和模型推理、I3D模型推理的方法; 注意事项本案例推荐使用TensorFlow-1.13.1,需使用 GPU 运行,请查看《ModelArts JupyterLab 硬件规格使用指南》了解切换硬件规格的方法;如果您是第一次使用 JupyterLab,请查看《ModelArts JupyterLab使用指导》了解使用方法;如果您在使用...
- 基于ModelArts进行流感患者密接排查目前新冠患者密接难以排查,尤其是在人流量大的区域,进行排查需要消耗大量人力且需要等待。针对疫情期间存在的排查实时性差、排查效率低、无法追踪密接者等问题,可以使用基于YOLOv4的行人检测、行人距离估计、多目标跟踪的方案进行解决。1)利用行人重识别技术实现新冠肺炎患者及密接者识别功能;2)结合Stereo-vision以及YOLO算法实现患者的真实密... 基于ModelArts进行流感患者密接排查目前新冠患者密接难以排查,尤其是在人流量大的区域,进行排查需要消耗大量人力且需要等待。针对疫情期间存在的排查实时性差、排查效率低、无法追踪密接者等问题,可以使用基于YOLOv4的行人检测、行人距离估计、多目标跟踪的方案进行解决。1)利用行人重识别技术实现新冠肺炎患者及密接者识别功能;2)结合Stereo-vision以及YOLO算法实现患者的真实密...
- 本期精彩看点:华为云CodeArts Req如何将需求管理化繁为简;华为云ModelBox与伙伴佳华科技合作推出的“华为云客流统计项目”成功探索了传统门店客流经营的数字化转型;在遭遇异常流量高峰时,数据库异常如何处理… 本期精彩看点:华为云CodeArts Req如何将需求管理化繁为简;华为云ModelBox与伙伴佳华科技合作推出的“华为云客流统计项目”成功探索了传统门店客流经营的数字化转型;在遭遇异常流量高峰时,数据库异常如何处理…
- 使用CenterFace实现人脸贴图 注意事项本案例使用AI引擎:MindSpore-1.3.0;本案例使用 GPU 环境运行,需要切换至对应的硬件环境。请查看《ModelArts JupyterLab 硬件规格使用指南》了解切换硬件规格的方法;如果您是第一次使用 JupyterLab,请查看《ModelArts JupyterLab使用指导》了解使用方法;如果您在使用 JupyterLa... 使用CenterFace实现人脸贴图 注意事项本案例使用AI引擎:MindSpore-1.3.0;本案例使用 GPU 环境运行,需要切换至对应的硬件环境。请查看《ModelArts JupyterLab 硬件规格使用指南》了解切换硬件规格的方法;如果您是第一次使用 JupyterLab,请查看《ModelArts JupyterLab使用指导》了解使用方法;如果您在使用 JupyterLa...
上滑加载中
推荐直播
-
探秘仓颉编程语言:华为开发者空间的创新利器
2025/02/22 周六 15:00-16:30
华为云讲师团
本期直播将与您一起探秘颉编程语言上线华为开发者空间后,显著提升开发效率,在智能化开发支持、全场景跨平台适配能力、工具链与生态完备性、语言简洁与高性能特性等方面展现出的独特优势。直播看点: 1.java转仓颉的小工具 2.仓颉动画三方库lottie 3.开发者空间介绍及如何在空间用仓颉编程语言开发
回顾中 -
大模型Prompt工程深度实践
2025/02/24 周一 16:00-17:30
盖伦 华为云学堂技术讲师
如何让大模型精准理解开发需求并生成可靠输出?本期直播聚焦大模型Prompt工程核心技术:理解大模型推理基础原理,关键采样参数定义,提示词撰写关键策略及Prompt工程技巧分享。
去报名 -
华为云 x DeepSeek:AI驱动云上应用创新
2025/02/26 周三 16:00-18:00
华为云 AI专家大咖团
在 AI 技术飞速发展之际,DeepSeek 备受关注。它凭借哪些技术与理念脱颖而出?华为云与 DeepSeek 合作,将如何重塑产品与应用模式,助力企业数字化转型?在华为开发者空间,怎样高效部署 DeepSeek,搭建专属服务器?基于华为云平台,又该如何挖掘 DeepSeek 潜力,实现智能化升级?本期直播围绕DeepSeek在云上的应用案例,与DTSE布道师们一起探讨如何利用AI 驱动云上应用创新。
去报名
热门标签