- 🍋引言当涉及到机器学习和数据科学中的分类问题时,评估模型的性能至关重要。选择适当的性能衡量标准有助于我们了解模型的效果,并作出有根据的决策。本博客将介绍一些常用的分类问题衡量标准,以及它们在不同情境下的应用。🍋为什么需要分类问题的性能衡量标准?在机器学习中,分类问题是一类非常常见的任务。它包括将数据点分为两个或多个不同的类别或标签。例如,我们可以使用分类算法来预测电子邮件是否为垃圾邮件,... 🍋引言当涉及到机器学习和数据科学中的分类问题时,评估模型的性能至关重要。选择适当的性能衡量标准有助于我们了解模型的效果,并作出有根据的决策。本博客将介绍一些常用的分类问题衡量标准,以及它们在不同情境下的应用。🍋为什么需要分类问题的性能衡量标准?在机器学习中,分类问题是一类非常常见的任务。它包括将数据点分为两个或多个不同的类别或标签。例如,我们可以使用分类算法来预测电子邮件是否为垃圾邮件,...
- 🍋引言在机器学习领域,逻辑回归是一种常用的分类算法,它可以用于解决诸如垃圾邮件过滤、疾病预测和客户流失分析等各种分类问题。然而,有时候简单的线性逻辑回归模型无法捕捉到数据中的复杂关系。为了更好地处理这些情况,我们可以引入多项式特征,从而提高模型的表现。🍋逻辑回归简介逻辑回归是一种广泛应用于二元分类问题的监督学习算法。它通过将输入特征线性组合并通过一个逻辑函数(也称为Sigmoid函数)将... 🍋引言在机器学习领域,逻辑回归是一种常用的分类算法,它可以用于解决诸如垃圾邮件过滤、疾病预测和客户流失分析等各种分类问题。然而,有时候简单的线性逻辑回归模型无法捕捉到数据中的复杂关系。为了更好地处理这些情况,我们可以引入多项式特征,从而提高模型的表现。🍋逻辑回归简介逻辑回归是一种广泛应用于二元分类问题的监督学习算法。它通过将输入特征线性组合并通过一个逻辑函数(也称为Sigmoid函数)将...
- 🍋引言逻辑回归是机器学习领域中一种重要的分类算法,它常用于解决二分类问题。无论是垃圾邮件过滤、疾病诊断还是客户流失预测,逻辑回归都是一个强大的工具。本文将深入探讨逻辑回归的原理、应用场景以及如何在Python中实现它。🍋逻辑回归的原理逻辑回归是一种广义线性模型(Generalized Linear Model,简称GLM),它的目标是根据输入特征的线性组合来预测二分类问题中的概率。具体来... 🍋引言逻辑回归是机器学习领域中一种重要的分类算法,它常用于解决二分类问题。无论是垃圾邮件过滤、疾病诊断还是客户流失预测,逻辑回归都是一个强大的工具。本文将深入探讨逻辑回归的原理、应用场景以及如何在Python中实现它。🍋逻辑回归的原理逻辑回归是一种广义线性模型(Generalized Linear Model,简称GLM),它的目标是根据输入特征的线性组合来预测二分类问题中的概率。具体来...
- 🍋引言在机器学习和统计建模中,回归分析是一项重要的任务,用于预测一个或多个因变量与一个或多个自变量之间的关系。在这个领域中,有许多回归方法可供选择,其中岭回归和LASSO回归是两种经典的线性回归技术。在本文中,我们将深入探讨这两种方法的原理、应用和优缺点,帮助您更好地理解它们在实际问题中的作用。🍋岭回归(Ridge Regression)岭回归,又称L2正则化,是一种用于解决多重共线性问... 🍋引言在机器学习和统计建模中,回归分析是一项重要的任务,用于预测一个或多个因变量与一个或多个自变量之间的关系。在这个领域中,有许多回归方法可供选择,其中岭回归和LASSO回归是两种经典的线性回归技术。在本文中,我们将深入探讨这两种方法的原理、应用和优缺点,帮助您更好地理解它们在实际问题中的作用。🍋岭回归(Ridge Regression)岭回归,又称L2正则化,是一种用于解决多重共线性问...
- 🍋引言在机器学习模型中,过拟合和欠拟合是两种常见的问题。它们在模型训练和预测过程中扮演着重要的角色。了解过拟合和欠拟合的概念、影响、解决方法以及研究现状和趋势,对于提高机器学习模型性能和实用性具有重要意义。🍋过拟合和欠拟合的概念过拟合是指机器学习模型在训练数据上表现优良,但在测试数据上表现较差的现象。这意味着模型在训练数据集上学习了过多的特定细节,以至于在新的、未见过的数据上无法泛化。相... 🍋引言在机器学习模型中,过拟合和欠拟合是两种常见的问题。它们在模型训练和预测过程中扮演着重要的角色。了解过拟合和欠拟合的概念、影响、解决方法以及研究现状和趋势,对于提高机器学习模型性能和实用性具有重要意义。🍋过拟合和欠拟合的概念过拟合是指机器学习模型在训练数据上表现优良,但在测试数据上表现较差的现象。这意味着模型在训练数据集上学习了过多的特定细节,以至于在新的、未见过的数据上无法泛化。相...
- 🍀引言主成分分析(PCA)是一种常用于降维和特征提取的技术,它有助于发现数据中的主要变化方向。虽然传统的PCA方法通常依赖于特征值分解或奇异值分解等数学技巧,但在本文中,我们将介绍一种不同的方法,即使用梯度上升来求解PCA问题。🍀什么是主成分分析(PCA)?主成分分析是一种统计技术,旨在找到数据中的主要变化方向,以便将数据投影到新的坐标系中,从而减少维度或提取最重要的特征。通常情况下,P... 🍀引言主成分分析(PCA)是一种常用于降维和特征提取的技术,它有助于发现数据中的主要变化方向。虽然传统的PCA方法通常依赖于特征值分解或奇异值分解等数学技巧,但在本文中,我们将介绍一种不同的方法,即使用梯度上升来求解PCA问题。🍀什么是主成分分析(PCA)?主成分分析是一种统计技术,旨在找到数据中的主要变化方向,以便将数据投影到新的坐标系中,从而减少维度或提取最重要的特征。通常情况下,P...
- 🍀随机梯度下降的调试🍀引言随机梯度下降是一种优化方法,主要作用是提高迭代速度,避免陷入庞大计算量的泥沼。在每次更新时,随机梯度下降只使用一个样本中的一个例子来近似所有的样本,来调整参数,虽然不是全局最优解,但很多时候是可接受的。前两篇主要介绍了一下批量梯度下降,本节前部分主要介绍一下随机梯度下降🍀随机、批量梯度下降的差异随机梯度下降和批量梯度下降都是常用的优化方法,它们在处理大规模数据... 🍀随机梯度下降的调试🍀引言随机梯度下降是一种优化方法,主要作用是提高迭代速度,避免陷入庞大计算量的泥沼。在每次更新时,随机梯度下降只使用一个样本中的一个例子来近似所有的样本,来调整参数,虽然不是全局最优解,但很多时候是可接受的。前两篇主要介绍了一下批量梯度下降,本节前部分主要介绍一下随机梯度下降🍀随机、批量梯度下降的差异随机梯度下降和批量梯度下降都是常用的优化方法,它们在处理大规模数据...
- 🍀引言承接上篇,这篇主要有两个重点,一个是eta参数的调解;一个是在sklearn中实现梯度下降在梯度下降算法中,学习率(通常用符号η表示,也称为步长或学习速率)的选择非常重要,因为它直接影响了算法的性能和收敛速度。学习率控制了每次迭代中模型参数更新的幅度。以下是学习率(η)的重要性:收敛速度:学习率决定了模型在每次迭代中移动多远。如果学习率过大,模型可能会在参数空间中来回摇摆,导致不稳定... 🍀引言承接上篇,这篇主要有两个重点,一个是eta参数的调解;一个是在sklearn中实现梯度下降在梯度下降算法中,学习率(通常用符号η表示,也称为步长或学习速率)的选择非常重要,因为它直接影响了算法的性能和收敛速度。学习率控制了每次迭代中模型参数更新的幅度。以下是学习率(η)的重要性:收敛速度:学习率决定了模型在每次迭代中移动多远。如果学习率过大,模型可能会在参数空间中来回摇摆,导致不稳定...
- 本文深入探讨了强化学习在自然语言处理(NLP)中的应用,涵盖了强化学习的基础概念、与NLP的结合方式、技术细节以及实际的应用案例。通过详细的解释和Python、PyTorch的实现代码,读者将了解如何利用强化学习优化NLP任务,如对话系统和机器翻译。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员... 本文深入探讨了强化学习在自然语言处理(NLP)中的应用,涵盖了强化学习的基础概念、与NLP的结合方式、技术细节以及实际的应用案例。通过详细的解释和Python、PyTorch的实现代码,读者将了解如何利用强化学习优化NLP任务,如对话系统和机器翻译。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员...
- 机器翻译是使计算机能够将一种语言转化为另一种语言的技术领域。本文从简介、基于规则、统计和神经网络的方法入手,深入解析了各种机器翻译策略。同时,详细探讨了评估机器翻译性能的多种标准和工具,包括BLEU、METEOR等,以确保翻译的准确性和质量。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云... 机器翻译是使计算机能够将一种语言转化为另一种语言的技术领域。本文从简介、基于规则、统计和神经网络的方法入手,深入解析了各种机器翻译策略。同时,详细探讨了评估机器翻译性能的多种标准和工具,包括BLEU、METEOR等,以确保翻译的准确性和质量。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云...
- 本文深入探讨了信息抽取的关键组成部分:命名实体识别、关系抽取和事件抽取,并提供了基于PyTorch的实现代码。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。引言背景和信息抽取的重要性随着互联网和社交媒体的飞速发展,我们每天都... 本文深入探讨了信息抽取的关键组成部分:命名实体识别、关系抽取和事件抽取,并提供了基于PyTorch的实现代码。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。引言背景和信息抽取的重要性随着互联网和社交媒体的飞速发展,我们每天都...
- 在本文中,我们深入探讨了语言模型的内部工作机制,从基础模型到大规模的变种,并分析了各种评价指标的优缺点。文章通过代码示例、算法细节和最新研究,提供了一份全面而深入的视角,旨在帮助读者更准确地理解和评估语言模型的性能。本文适用于研究者、开发者以及对人工智能有兴趣的广大读者。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复... 在本文中,我们深入探讨了语言模型的内部工作机制,从基础模型到大规模的变种,并分析了各种评价指标的优缺点。文章通过代码示例、算法细节和最新研究,提供了一份全面而深入的视角,旨在帮助读者更准确地理解和评估语言模型的性能。本文适用于研究者、开发者以及对人工智能有兴趣的广大读者。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复...
- 本文全面回顾了自然语言处理(NLP)从20世纪50年代至今的历史发展。从初创期的符号学派和随机学派,到理性主义时代的逻辑和规则范式,再到经验主义和深度学习时代的数据驱动方法,以及最近的大模型时代,NLP经历了多次技术革新和范式转换。文章不仅详细介绍了每个阶段的核心概念和技术,还提供了丰富的Python和PyTorch实战代码。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服... 本文全面回顾了自然语言处理(NLP)从20世纪50年代至今的历史发展。从初创期的符号学派和随机学派,到理性主义时代的逻辑和规则范式,再到经验主义和深度学习时代的数据驱动方法,以及最近的大模型时代,NLP经历了多次技术革新和范式转换。文章不仅详细介绍了每个阶段的核心概念和技术,还提供了丰富的Python和PyTorch实战代码。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服...
- 本文从BERT的基本概念和架构开始,详细讲解了其预训练和微调机制,并通过Python和PyTorch代码示例展示了如何在实际应用中使用这一模型。我们探讨了BERT的核心特点,包括其强大的注意力机制和与其他Transformer架构的差异。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证... 本文从BERT的基本概念和架构开始,详细讲解了其预训练和微调机制,并通过Python和PyTorch代码示例展示了如何在实际应用中使用这一模型。我们探讨了BERT的核心特点,包括其强大的注意力机制和与其他Transformer架构的差异。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证...
- 在本文中,我们深入探讨了注意力机制的理论基础和实际应用。从其历史发展和基础定义,到具体的数学模型,再到其在自然语言处理和计算机视觉等多个人工智能子领域的应用实例,本文为您提供了一个全面且深入的视角。通过Python和PyTorch代码示例,我们还展示了如何实现这一先进的机制。关注TechLead,分享AI技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本... 在本文中,我们深入探讨了注意力机制的理论基础和实际应用。从其历史发展和基础定义,到具体的数学模型,再到其在自然语言处理和计算机视觉等多个人工智能子领域的应用实例,本文为您提供了一个全面且深入的视角。通过Python和PyTorch代码示例,我们还展示了如何实现这一先进的机制。关注TechLead,分享AI技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签