- 需求跨领域跨任务:领域之间知识迁移难度高,如通用领域知识很难迁移到垂类领域,垂类领域之间的知识很难相互迁移;存在实体、关系、事件等不同的信息抽取任务需求。 - 定制化程度高:针对实体、关系、事件等不同的信息抽取任务,需要开发不同的模型,开发成本和机器资源消耗都很大。 - 训练数据无或很少:部分领域数据稀缺,难以获取,且领域专业性使得数据标注门槛高。 需求跨领域跨任务:领域之间知识迁移难度高,如通用领域知识很难迁移到垂类领域,垂类领域之间的知识很难相互迁移;存在实体、关系、事件等不同的信息抽取任务需求。 - 定制化程度高:针对实体、关系、事件等不同的信息抽取任务,需要开发不同的模型,开发成本和机器资源消耗都很大。 - 训练数据无或很少:部分领域数据稀缺,难以获取,且领域专业性使得数据标注门槛高。
- Transformer是谷歌在2017年发表的论文Attention Is All You Need中提出的一种seq2seq模型,首先是在自然语言处理方面应用,现在已经取得了更大范围的应用与拓展,如今已经成为非常火热的模型。本篇博文将带着问题,边阅读文章和源码,阐述Transfomer的特点、框架、原理和相关理解。 Transformer是谷歌在2017年发表的论文Attention Is All You Need中提出的一种seq2seq模型,首先是在自然语言处理方面应用,现在已经取得了更大范围的应用与拓展,如今已经成为非常火热的模型。本篇博文将带着问题,边阅读文章和源码,阐述Transfomer的特点、框架、原理和相关理解。
- 创造无限,当“燃”是开发者,华为云1024程序员节,陶新乐和大家分享独立开发者的自由之路。 创造无限,当“燃”是开发者,华为云1024程序员节,陶新乐和大家分享独立开发者的自由之路。
- 今年,华为云温哥华大数据与智能平台实验室与加拿大两所顶尖高校(University of British Columbia 和 Western University)一起,在人工智能AI国际顶会NeurIPS2022上联合举办了The Natural Language for Optimization (NL4Opt)竞赛 今年,华为云温哥华大数据与智能平台实验室与加拿大两所顶尖高校(University of British Columbia 和 Western University)一起,在人工智能AI国际顶会NeurIPS2022上联合举办了The Natural Language for Optimization (NL4Opt)竞赛
- 前一篇文章分享了自定义情感词典(大连理工词典)实现情感分析和情绪分类的过程。这篇文章将详细讲解自然语言处理过程,基于机器学习和TFIDF的情感分类算法,并进行了各种分类算法(SVM、RF、LR、Boosting)对比。这篇文章主要结合作者的书籍《Python网络数据爬取及分析从入门到精通(分析篇)》进行讲解,再次带领大家好好看看Python中文文本分析的基本步骤。个人感觉还不错,基础性文章,希望对 前一篇文章分享了自定义情感词典(大连理工词典)实现情感分析和情绪分类的过程。这篇文章将详细讲解自然语言处理过程,基于机器学习和TFIDF的情感分类算法,并进行了各种分类算法(SVM、RF、LR、Boosting)对比。这篇文章主要结合作者的书籍《Python网络数据爬取及分析从入门到精通(分析篇)》进行讲解,再次带领大家好好看看Python中文文本分析的基本步骤。个人感觉还不错,基础性文章,希望对
- 《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座,并分享给大家,希望您喜欢。由于作者的英文水平和学术能力不高,需要不断提升,所以还请大家批评指正,非常欢迎大家给我留言评论,学术路上期待与您前行。这篇博客是在B站学习“深度之眼”Pvop老师的分享,题目为《高手是怎样学习NLP》。 《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座,并分享给大家,希望您喜欢。由于作者的英文水平和学术能力不高,需要不断提升,所以还请大家批评指正,非常欢迎大家给我留言评论,学术路上期待与您前行。这篇博客是在B站学习“深度之眼”Pvop老师的分享,题目为《高手是怎样学习NLP》。
- ModelArts Pro提供了自然语言处理套件,为客户提供自然语言处理的自定制工具,旨在帮助客户高效地构建行业领域的高精度文本处理模型,可应用于政府、金融、法律等行业。 ModelArts Pro提供了自然语言处理套件,为客户提供自然语言处理的自定制工具,旨在帮助客户高效地构建行业领域的高精度文本处理模型,可应用于政府、金融、法律等行业。
- 时序预测模型无外乎RNN(LSTM, GRU)以及现在非常火的Transformer。这些时序神经网络模型的主要应用都集中在自然语言处理上面(transformer就是为了NLP设计的)。在近些年来,RNN和Transformer逐渐被应用于时序预测上面,并取得了很好的效果。2021年发表的Informer网络获得了AAAI best paper。本文主要分析自然语言处理和时序预测的相似性,并介绍 时序预测模型无外乎RNN(LSTM, GRU)以及现在非常火的Transformer。这些时序神经网络模型的主要应用都集中在自然语言处理上面(transformer就是为了NLP设计的)。在近些年来,RNN和Transformer逐渐被应用于时序预测上面,并取得了很好的效果。2021年发表的Informer网络获得了AAAI best paper。本文主要分析自然语言处理和时序预测的相似性,并介绍
- 回顾-AI全栈成长计划-AI应用篇,—自然语言处理 回顾-AI全栈成长计划-AI应用篇,—自然语言处理
- 今年,华为云温哥华大数据与智能平台实验室与加拿大两所顶尖高校(University of British Columbia 和 Western University)一起,在人工智能AI国际顶会NeurIPS2022上联合举办了The Natural Language for Optimization (NL4Opt)竞赛。 今年,华为云温哥华大数据与智能平台实验室与加拿大两所顶尖高校(University of British Columbia 和 Western University)一起,在人工智能AI国际顶会NeurIPS2022上联合举办了The Natural Language for Optimization (NL4Opt)竞赛。
- 由于大语言模型的训练需要巨大的计算资源,通常不可能多次迭代大语言模型预训练。千亿级参数量的大语言模型每次预训练的计算需要花费数百万元人民币。因此,在训练大语言模型之前,构建一个准备充分的预训练语料库尤为重要。本篇文章中,将从数据规模、数量质量以及数据多样性三个方面分析数据对大语言模型的性能的影响。需要特别的说明的是,由于在千亿参数规模的大语言模型上进行实验的成本非常高,很多结论是在1... 由于大语言模型的训练需要巨大的计算资源,通常不可能多次迭代大语言模型预训练。千亿级参数量的大语言模型每次预训练的计算需要花费数百万元人民币。因此,在训练大语言模型之前,构建一个准备充分的预训练语料库尤为重要。本篇文章中,将从数据规模、数量质量以及数据多样性三个方面分析数据对大语言模型的性能的影响。需要特别的说明的是,由于在千亿参数规模的大语言模型上进行实验的成本非常高,很多结论是在1...
- 玩转字词句魔法:打造超强样本集的数据增强策略,句式变换揭秘同义句生成与回译在数据增强中的创新应用 玩转字词句魔法:打造超强样本集的数据增强策略,句式变换揭秘同义句生成与回译在数据增强中的创新应用
- 聊天记录年度报告一览无余:轻松多格式导出永久保存,深度智能分析 聊天记录年度报告一览无余:轻松多格式导出永久保存,深度智能分析
- 大语言模型结构当前绝大多数大语言模型结构都采用了类似GPT 架构,使用基于Transformer 架构构造的仅由解码器组成的网络结构,采用自回归的方式构建语言模型。但是在位置编码、层归一化位置以及激活函数等细节上各有不同。上篇文章 介绍了GPT-3 模型的训练过程,包括模型架构、训练数据组成、训练过程以及评估方法。由于GPT-3 并没有开放源代码,根据论文直接重现整个训练过程并不容易... 大语言模型结构当前绝大多数大语言模型结构都采用了类似GPT 架构,使用基于Transformer 架构构造的仅由解码器组成的网络结构,采用自回归的方式构建语言模型。但是在位置编码、层归一化位置以及激活函数等细节上各有不同。上篇文章 介绍了GPT-3 模型的训练过程,包括模型架构、训练数据组成、训练过程以及评估方法。由于GPT-3 并没有开放源代码,根据论文直接重现整个训练过程并不容易...
- 大规模语言模型(Large Language Models,LLM),也称大规模语言模型或大型语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,使用自监督学习方法通过大量无标注文本进行训练。自2018 年以来,Google、OpenAI、Meta、百度、华为等公司和研究机构都相继发布了包括BERT[1],GPT[6] 等在内多种模型,并在几乎所有自然语言处理任务中都表现出色。... 大规模语言模型(Large Language Models,LLM),也称大规模语言模型或大型语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,使用自监督学习方法通过大量无标注文本进行训练。自2018 年以来,Google、OpenAI、Meta、百度、华为等公司和研究机构都相继发布了包括BERT[1],GPT[6] 等在内多种模型,并在几乎所有自然语言处理任务中都表现出色。...
上滑加载中
推荐直播
-
物联网资深专家带你轻松构建AIoT智能场景应用
2024/11/21 周四 16:30-18:00
管老师 华为云IoT DTSE技术布道师
如何轻松构建AIoT智能场景应用?本期直播将聚焦华为云设备接入平台,结合AI、鸿蒙(OpenHarmony)、大数据等技术,实现物联网端云协同创新场景,教您如何打造更有实用性及创新性的AIoT行业标杆应用。
回顾中 -
Ascend C算子编程之旅:基础入门篇
2024/11/22 周五 16:00-17:30
莫老师 昇腾CANN专家
介绍Ascend C算子基本概念、异构计算架构CANN和Ascend C基本概述,以及Ascend C快速入门,夯实Ascend C算子编程基础
即将直播 -
深入解析:华为全栈AI解决方案与云智能开放能力
2024/11/22 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播我们将重点为大家介绍华为全栈全场景AI解决方案以和华为云企业智能AI开放能力。旨在帮助开发者深入理解华为AI解决方案,并能够更加熟练地运用这些技术。通过洞悉华为解决方案,了解人工智能完整生态链条的构造。
去报名
热门标签