- 前言 博主在之前的文章中介绍过使用keras搭建一个基于矩阵分解的推荐系统,而那篇文章所介绍的方法可能只是一个庞大推荐系统中的一小环节。而对于工业级别的推荐系统,面对极其庞大的产品种类数量,一步就输出符合用户心意的产品可能够呛,最好的方式应该是从巨大的产品类别之中粗筛出一些靠谱的待推荐产品,然后再从粗筛的产品中精挑细选出要推荐给用户的... 前言 博主在之前的文章中介绍过使用keras搭建一个基于矩阵分解的推荐系统,而那篇文章所介绍的方法可能只是一个庞大推荐系统中的一小环节。而对于工业级别的推荐系统,面对极其庞大的产品种类数量,一步就输出符合用户心意的产品可能够呛,最好的方式应该是从巨大的产品类别之中粗筛出一些靠谱的待推荐产品,然后再从粗筛的产品中精挑细选出要推荐给用户的...
- 计算广告与推荐系统有哪些区别? 这两个领域的联系大于区别,区别的根本在于两个领域尝试解决的问题是不同的。 对于计算广告来说,本质上要处理的是三方利益的协调问题,这三方分别是广告主、用户和媒体。 对于推荐系统来说,本质上要处理的是用户体验的问题。 正是因为要处理问题的不同,导致了两个领... 计算广告与推荐系统有哪些区别? 这两个领域的联系大于区别,区别的根本在于两个领域尝试解决的问题是不同的。 对于计算广告来说,本质上要处理的是三方利益的协调问题,这三方分别是广告主、用户和媒体。 对于推荐系统来说,本质上要处理的是用户体验的问题。 正是因为要处理问题的不同,导致了两个领...
- 前言 在全面进入无线的时代,为了解决信息负载的问题,越来越多的推荐场景得到兴起,尤其是以列表推荐形式为主的信息流推荐。以手淘信息流为例,进入猜你喜欢场景的用户,兴趣常常是不明确的,用户浏览时往往没有明确的商品需求,而是在逛的过程中逐渐去发现想买的商品。而推荐系统在用户逛的过程中,会向客户端下发并呈现不同类型的商品让用户从中挑选,推荐系... 前言 在全面进入无线的时代,为了解决信息负载的问题,越来越多的推荐场景得到兴起,尤其是以列表推荐形式为主的信息流推荐。以手淘信息流为例,进入猜你喜欢场景的用户,兴趣常常是不明确的,用户浏览时往往没有明确的商品需求,而是在逛的过程中逐渐去发现想买的商品。而推荐系统在用户逛的过程中,会向客户端下发并呈现不同类型的商品让用户从中挑选,推荐系...
- 前言 在构建推荐系统的过程中,冷启动是我们要面临的一个很现实的问题,而除了加特征,加样本,加图谱,加规则,还有其他方法吗? 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门... 前言 在构建推荐系统的过程中,冷启动是我们要面临的一个很现实的问题,而除了加特征,加样本,加图谱,加规则,还有其他方法吗? 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门...
- 前言 本文介绍一下推荐系统的相关评测指标。推荐系统的数据指标分为两种。 (1)商业指标,即推荐系统的与最终交易额相关的指标。我们做推荐系统的目的是为了代替人工给用户推荐商品,提高效率,实现千人千面的用户体验,从而带来更多的交易额。商业指标包括曝光次数、商品的PV、商品的UV、商品支付人数、支付金额、支付件数,以及点击率(商品PV与曝... 前言 本文介绍一下推荐系统的相关评测指标。推荐系统的数据指标分为两种。 (1)商业指标,即推荐系统的与最终交易额相关的指标。我们做推荐系统的目的是为了代替人工给用户推荐商品,提高效率,实现千人千面的用户体验,从而带来更多的交易额。商业指标包括曝光次数、商品的PV、商品的UV、商品支付人数、支付金额、支付件数,以及点击率(商品PV与曝...
- 前言 所谓“物以类聚,人以群分”,基于用户的协同过滤算法就是基于这个原理来实现的。 你可能听过“啤酒与尿不湿”的故事:通过对一家超市的销售数据分析发现,有很多人在购买啤酒的同时又购买了尿不湿,这就是基于物品的协同过滤算法的案例。 读完本文你可以了解这两种算法的原理,并学会如何实现这两种算法。 &n... 前言 所谓“物以类聚,人以群分”,基于用户的协同过滤算法就是基于这个原理来实现的。 你可能听过“啤酒与尿不湿”的故事:通过对一家超市的销售数据分析发现,有很多人在购买啤酒的同时又购买了尿不湿,这就是基于物品的协同过滤算法的案例。 读完本文你可以了解这两种算法的原理,并学会如何实现这两种算法。 &n...
- 前言 在本文中,将详细介绍多种类型的推荐系统,具体介绍基于近邻算法的推荐引擎、个性化推荐引擎、基于模型的推荐系统和混合推荐引擎等,并分析介绍每种推荐系统的优缺点。 主要介绍的不同类型的推荐系统包括: 近邻算法推荐引擎:基于用户的协同过滤和基于项目的协同过滤; 个性化推荐引擎:基于内容的推荐引擎和情境感知推荐引擎; ... 前言 在本文中,将详细介绍多种类型的推荐系统,具体介绍基于近邻算法的推荐引擎、个性化推荐引擎、基于模型的推荐系统和混合推荐引擎等,并分析介绍每种推荐系统的优缺点。 主要介绍的不同类型的推荐系统包括: 近邻算法推荐引擎:基于用户的协同过滤和基于项目的协同过滤; 个性化推荐引擎:基于内容的推荐引擎和情境感知推荐引擎; ...
- 【推荐系统】⚠️手把手带你学推荐系统 2⚠️ 协同过滤 概述协同过滤基于用户的协同过滤基于物品的协同过滤 对比 概述 推荐系统 (Recommender System) 是一个信息过滤... 【推荐系统】⚠️手把手带你学推荐系统 2⚠️ 协同过滤 概述协同过滤基于用户的协同过滤基于物品的协同过滤 对比 概述 推荐系统 (Recommender System) 是一个信息过滤...
- 推荐系统评测 概述推荐系统的实验方法离线实验用户调查在线试验 评测指标用户满意度预测准确度评分预测TopN 推荐 概述 什么才是好的推荐系统? 这是推荐系统需要解决的首要问题... 推荐系统评测 概述推荐系统的实验方法离线实验用户调查在线试验 评测指标用户满意度预测准确度评分预测TopN 推荐 概述 什么才是好的推荐系统? 这是推荐系统需要解决的首要问题...
- 推荐系统 概述什么是推荐系统 工作原理个性化推荐系统的应用 概述 在研究图和涉及推荐系统之前, 了解上面是好的推荐系统至关重要. 什么是推荐系统 假设以下, 如果你想买牛肉干, 你... 推荐系统 概述什么是推荐系统 工作原理个性化推荐系统的应用 概述 在研究图和涉及推荐系统之前, 了解上面是好的推荐系统至关重要. 什么是推荐系统 假设以下, 如果你想买牛肉干, 你...
- 基于酒店文本描述来推荐相似酒店 import pandas as pd import numpy as np from nltk.corpus import stopwords from sklearn.metrics.pairwise import linear_kernel from sklearn.feature_extraction.text import C... 基于酒店文本描述来推荐相似酒店 import pandas as pd import numpy as np from nltk.corpus import stopwords from sklearn.metrics.pairwise import linear_kernel from sklearn.feature_extraction.text import C...
- 定义推荐系统 看一个预测电影评分的案例。 问题是:假设你在亚马逊工作,你需要让你的用户评价不同的电影。从0颗星到5颗星进行一个评定。前三部电影为爱情电影,后两部电影为动作电影 先看图中的列表,列表左侧表示电影的名称,这里我们可以看到一共有5部电影,和四个用户,这四个用户分别对这几部电影进行了一个评分,Alice非常喜欢前两部电影,他为前两部电影都打了满分5颗星... 定义推荐系统 看一个预测电影评分的案例。 问题是:假设你在亚马逊工作,你需要让你的用户评价不同的电影。从0颗星到5颗星进行一个评定。前三部电影为爱情电影,后两部电影为动作电影 先看图中的列表,列表左侧表示电影的名称,这里我们可以看到一共有5部电影,和四个用户,这四个用户分别对这几部电影进行了一个评分,Alice非常喜欢前两部电影,他为前两部电影都打了满分5颗星...
- 本代码应用movielens 的数据集,讲解如何利用深度学习构造推荐系统模型。推荐系统的目标函数有很多,比如推荐评分最高的,或者推荐点击率最高的等等。有时候我们还会兼顾推荐内容的多样性。在这里使用的是最根本的基于用户给内容打分的情形。这里的核心思想是对用户和内容建模,从而预测用户对未看过内容的打分。推荐系统进而会把预测的高分内容呈现给用户。 数据集下载链接 http... 本代码应用movielens 的数据集,讲解如何利用深度学习构造推荐系统模型。推荐系统的目标函数有很多,比如推荐评分最高的,或者推荐点击率最高的等等。有时候我们还会兼顾推荐内容的多样性。在这里使用的是最根本的基于用户给内容打分的情形。这里的核心思想是对用户和内容建模,从而预测用户对未看过内容的打分。推荐系统进而会把预测的高分内容呈现给用户。 数据集下载链接 http...
- 基于物品的协同过滤算法 目前业界应用最多的算法。 给用户推荐和他们之前喜欢的物品相似的物品。 其主要通过分析用户的行为记录计算物品之间的相似度。物品A和物品B具有很大的相似度是因为喜欢物品A的用户大都也喜欢物品B。 ItemCF 可利用用户的历史行为给推荐结果提供推荐解释。 ItemCF算法主要分为两步: 计算物品之间的相似度; 根据物品的相似度和用户... 基于物品的协同过滤算法 目前业界应用最多的算法。 给用户推荐和他们之前喜欢的物品相似的物品。 其主要通过分析用户的行为记录计算物品之间的相似度。物品A和物品B具有很大的相似度是因为喜欢物品A的用户大都也喜欢物品B。 ItemCF 可利用用户的历史行为给推荐结果提供推荐解释。 ItemCF算法主要分为两步: 计算物品之间的相似度; 根据物品的相似度和用户...
- 基于模型的协同过滤算法 本节介绍基于模型的协同过滤算法1在Top-N推荐中的应用。 核心思想是 通过隐含特征(latent factor)联系用户兴趣和物品 。 思路:对于某个用户,首先得到其兴趣分类,然后从分类中挑选其可能喜欢的物品。 上述基于兴趣分类的方法需要解决3个问题: 如何给物品进行分类? 如何确定用户对哪些类的物品感兴趣,以及感兴趣的程度? ... 基于模型的协同过滤算法 本节介绍基于模型的协同过滤算法1在Top-N推荐中的应用。 核心思想是 通过隐含特征(latent factor)联系用户兴趣和物品 。 思路:对于某个用户,首先得到其兴趣分类,然后从分类中挑选其可能喜欢的物品。 上述基于兴趣分类的方法需要解决3个问题: 如何给物品进行分类? 如何确定用户对哪些类的物品感兴趣,以及感兴趣的程度? ...
上滑加载中
推荐直播
-
计算机核心课程贯通式实践教学体系介绍
2025/01/05 周日 09:00-12:00
华为开发者布道师、湖南大学二级教授、博士生导师赵欢
1月5日上午,华为开发者布道师直播间将迎来重磅嘉宾!赵欢老师,计算机教育创新先锋,其 “小而全系统” 教学方案重塑计算机类专业课程与实践,融合鲲鹏生态技术知识,斩获国家级教学成果奖。杨科华老师专注小型全系统实践,在香橙派鲲鹏 Pro 开发板构建精妙 mini 系统,带您直击计算机底层奥秘。还有香橙派系统开发部李博经理,精通开发板硬件与应用,将全方位揭秘开发板使用及 FPGA 开发实战案例。三位大咖齐聚,为高校师生开启计算机系统能力提升的知识宝库,精彩即将上线,速速预约!
回顾中 -
GaussDB数据库介绍
2025/01/07 周二 16:00-18:00
Steven 华为云学堂技术讲师
本期直播将介绍GaussDB数据库的发展历程、优势、架构、关键特性和部署模式等,旨在帮助开发者了解GaussDB数据库,并通过手把手实验教大家如何在华为云部署GaussDB数据库和使用gsql连接GaussDB数据库。
去报名 -
DTT年度收官盛典:华为开发者空间大咖汇,共探云端开发创新
2025/01/08 周三 16:30-18:00
Yawei 华为云开发工具和效率首席专家 Edwin 华为开发者空间产品总监
数字化转型进程持续加速,驱动着技术革新发展,华为开发者空间如何巧妙整合鸿蒙、昇腾、鲲鹏等核心资源,打破平台间的壁垒,实现跨平台协同?在科技迅猛发展的今天,开发者们如何迅速把握机遇,实现高效、创新的技术突破?DTT 年度收官盛典,将与大家共同探索华为开发者空间的创新奥秘。
去报名
热门标签