- 1.定位、目标。2. K-近邻算法涵盖距离度量、k值选择、kd树、鸢尾花种类预测数据集介绍、练一练、交叉验证网格搜索、facebook签到位置预测案例。3. 线性回归包括线性回归简介、线性回归损失和优化、梯度下降法介绍、波士顿房价预测案例、欠拟合和过拟合、正则化线性模型、正规方程推导方式、梯度下降法算法比较优化、维灾难。4. 逻辑回归涵盖逻辑回归介绍、癌症分类预测案例(良恶性乳 1.定位、目标。2. K-近邻算法涵盖距离度量、k值选择、kd树、鸢尾花种类预测数据集介绍、练一练、交叉验证网格搜索、facebook签到位置预测案例。3. 线性回归包括线性回归简介、线性回归损失和优化、梯度下降法介绍、波士顿房价预测案例、欠拟合和过拟合、正则化线性模型、正规方程推导方式、梯度下降法算法比较优化、维灾难。4. 逻辑回归涵盖逻辑回归介绍、癌症分类预测案例(良恶性乳
- 中国工业正向智能化、高端化转型,具备数字化能力的企业将获得先发优势。因此,数字化转型不再是企业的"加分项",而是关乎生存的"必选项"。而SCADA(数据采集与监控组态软件)作为工业自动化领域的核心系统,正成为工业企业提升抗风险能力的关键工具,帮助企业提升运营韧性。工业的"中枢神经系统"星图易码DevMate.SCADA组态软件就像工业的"数字神经系统",通过八大核心功能赋能企业:实时数据整合... 中国工业正向智能化、高端化转型,具备数字化能力的企业将获得先发优势。因此,数字化转型不再是企业的"加分项",而是关乎生存的"必选项"。而SCADA(数据采集与监控组态软件)作为工业自动化领域的核心系统,正成为工业企业提升抗风险能力的关键工具,帮助企业提升运营韧性。工业的"中枢神经系统"星图易码DevMate.SCADA组态软件就像工业的"数字神经系统",通过八大核心功能赋能企业:实时数据整合...
- NFC技术突破10厘米限制,扩展至40厘米以上,应用于工业场景,提升通信距离与环境适应性。 NFC技术突破10厘米限制,扩展至40厘米以上,应用于工业场景,提升通信距离与环境适应性。
- 1.1 深度学习介绍 深度学习与神经网络 1.2 神经网络基础 1.3 浅层神经网络 2.1 多分类与 TensorFlow 5、得出每次训练的准确率(通过真实值和预测值进行位置比较,每个样本都比较) 2.2 梯度下降算法改进 2.3.4 其它正则化方法 2.4 BN 与神经网络调优 3.1 图像数据与边缘检测 3.2 卷积神经网络(CNN)原理 3.3 经典分类网络结构 4. 1.1 深度学习介绍 深度学习与神经网络 1.2 神经网络基础 1.3 浅层神经网络 2.1 多分类与 TensorFlow 5、得出每次训练的准确率(通过真实值和预测值进行位置比较,每个样本都比较) 2.2 梯度下降算法改进 2.3.4 其它正则化方法 2.4 BN 与神经网络调优 3.1 图像数据与边缘检测 3.2 卷积神经网络(CNN)原理 3.3 经典分类网络结构 4.
- 1.定位、目标。2. K-近邻算法涵盖距离度量、k值选择、kd树、鸢尾花种类预测数据集介绍、练一练、交叉验证网格搜索、facebook签到位置预测案例。3. 线性回归包括线性回归简介、线性回归损失和优化、梯度下降法介绍、波士顿房价预测案例、欠拟合和过拟合、正则化线性模型、正规方程推导方式、梯度下降法算法比较优化、维灾难。4. 逻辑回归涵盖逻辑回归介绍、癌症分类预测案例(良恶性乳 1.定位、目标。2. K-近邻算法涵盖距离度量、k值选择、kd树、鸢尾花种类预测数据集介绍、练一练、交叉验证网格搜索、facebook签到位置预测案例。3. 线性回归包括线性回归简介、线性回归损失和优化、梯度下降法介绍、波士顿房价预测案例、欠拟合和过拟合、正则化线性模型、正规方程推导方式、梯度下降法算法比较优化、维灾难。4. 逻辑回归涵盖逻辑回归介绍、癌症分类预测案例(良恶性乳
- 2025年,人工智能技术正站在一个新的历史节点上。经过过去几年的爆发式发展,大语言模型(LLM)已从实验室走向各行各业,成为推动数字化转型的核心力量[2]。如今,随着技术的不断演进,我们正在见证AI从单模态向多模态、从工具向智能体、从云端向边缘的深刻变革。 2025年,人工智能技术正站在一个新的历史节点上。经过过去几年的爆发式发展,大语言模型(LLM)已从实验室走向各行各业,成为推动数字化转型的核心力量[2]。如今,随着技术的不断演进,我们正在见证AI从单模态向多模态、从工具向智能体、从云端向边缘的深刻变革。
- 本文聚焦智能制造场景下设备与制造执行系统(MES)的API网关改造实践,针对车间设备(数控机床、传感器等)工业协议(Modbus、OPC UA)与MES标准化接口的协同痛点展开。作者摒弃通用网关架构,采用“设备接入层+指令转发层”设计,接入层部署车间本地,负责协议解析、抗干扰数据清洗与本地缓存;转发层对接MES,实现数据格式转换与指令反向适配,通过双链路保障传输稳定。 本文聚焦智能制造场景下设备与制造执行系统(MES)的API网关改造实践,针对车间设备(数控机床、传感器等)工业协议(Modbus、OPC UA)与MES标准化接口的协同痛点展开。作者摒弃通用网关架构,采用“设备接入层+指令转发层”设计,接入层部署车间本地,负责协议解析、抗干扰数据清洗与本地缓存;转发层对接MES,实现数据格式转换与指令反向适配,通过双链路保障传输稳定。
- NFC技术通过嵌入产品实现高效检测,提升数据追溯与流程管控,解决传统检测中的效率低、误差大、信息孤岛等问题。 NFC技术通过嵌入产品实现高效检测,提升数据追溯与流程管控,解决传统检测中的效率低、误差大、信息孤岛等问题。
- 制造业企业面临着不断变化的客户需求和供应链挑战。供应链管理、需求预测和生产调度是提升企业效率和竞争力的关键技术。本文将深入探讨这些技术在制造业中的应用,分析其优势和挑战,并展望未来的发展趋势。通过具体的案例和数据,本文旨在为企业决策者和技术专家提供有价值的参考。 1. 引言制造业是国民经济的重要支柱,其效率和灵活性直接影响企业的竞争力。供应链管理、需求预测和生产调度是实现高效制造的关键技术。... 制造业企业面临着不断变化的客户需求和供应链挑战。供应链管理、需求预测和生产调度是提升企业效率和竞争力的关键技术。本文将深入探讨这些技术在制造业中的应用,分析其优势和挑战,并展望未来的发展趋势。通过具体的案例和数据,本文旨在为企业决策者和技术专家提供有价值的参考。 1. 引言制造业是国民经济的重要支柱,其效率和灵活性直接影响企业的竞争力。供应链管理、需求预测和生产调度是实现高效制造的关键技术。...
- 当鸿蒙遇上智能工厂:未来制造的“中控大脑” 当鸿蒙遇上智能工厂:未来制造的“中控大脑”
- 1.机器学习常用科学计算库包括基础定位、目标。2. 人工智能概述涵盖人工智能应用场景、人工智能小案例、人工智能发展必备三要素、人工智能机器学习和深度学习。3. 机器学习概述包括机器学习工作流程、什么是机器学习、模型评估(回归模型评估、拟合)、Azure机器学习模型搭建、完整机器学习项目流程。4. 机器学习基础环境安装与使用包括Jupyter Notebook使用(一级标题、Ju 1.机器学习常用科学计算库包括基础定位、目标。2. 人工智能概述涵盖人工智能应用场景、人工智能小案例、人工智能发展必备三要素、人工智能机器学习和深度学习。3. 机器学习概述包括机器学习工作流程、什么是机器学习、模型评估(回归模型评估、拟合)、Azure机器学习模型搭建、完整机器学习项目流程。4. 机器学习基础环境安装与使用包括Jupyter Notebook使用(一级标题、Ju
- 1.1 深度学习介绍 深度学习与神经网络 1.2 神经网络基础 1.3 浅层神经网络 2.1 多分类与 TensorFlow 5、得出每次训练的准确率(通过真实值和预测值进行位置比较,每个样本都比较) 2.2 梯度下降算法改进 2.3.4 其它正则化方法 2.4 BN 与神经网络调优 3.1 图像数据与边缘检测 3.2 卷积神经网络(CNN)原理 3.3 经典分类网络结构 4. 1.1 深度学习介绍 深度学习与神经网络 1.2 神经网络基础 1.3 浅层神经网络 2.1 多分类与 TensorFlow 5、得出每次训练的准确率(通过真实值和预测值进行位置比较,每个样本都比较) 2.2 梯度下降算法改进 2.3.4 其它正则化方法 2.4 BN 与神经网络调优 3.1 图像数据与边缘检测 3.2 卷积神经网络(CNN)原理 3.3 经典分类网络结构 4.
- 1.深度学习概述包括深度学习与机器学习区别、深度学习应用场景、深度学习框架介绍、项目演示、开发环境搭建(pycharm安装)。2. TensorFlow基础涵盖TF数据流图、TensorFlow实现加法运算、图与TensorBoard(图结构、图相关操作、默认图、创建图、OP)、张量(张量概念、张量的阶、张量数学运算)、变量OP(创建变量)、增加其他功能(命名空间、模型保存与加 1.深度学习概述包括深度学习与机器学习区别、深度学习应用场景、深度学习框架介绍、项目演示、开发环境搭建(pycharm安装)。2. TensorFlow基础涵盖TF数据流图、TensorFlow实现加法运算、图与TensorBoard(图结构、图相关操作、默认图、创建图、OP)、张量(张量概念、张量的阶、张量数学运算)、变量OP(创建变量)、增加其他功能(命名空间、模型保存与加
- 1.定位、目标。2. K-近邻算法涵盖距离度量、k值选择、kd树、鸢尾花种类预测数据集介绍、练一练、交叉验证网格搜索、facebook签到位置预测案例。3. 线性回归包括线性回归简介、线性回归损失和优化、梯度下降法介绍、波士顿房价预测案例、欠拟合和过拟合、正则化线性模型、正规方程推导方式、梯度下降法算法比较优化、维灾难。4. 逻辑回归涵盖逻辑回归介绍、癌症分类预测案例(良恶性乳 1.定位、目标。2. K-近邻算法涵盖距离度量、k值选择、kd树、鸢尾花种类预测数据集介绍、练一练、交叉验证网格搜索、facebook签到位置预测案例。3. 线性回归包括线性回归简介、线性回归损失和优化、梯度下降法介绍、波士顿房价预测案例、欠拟合和过拟合、正则化线性模型、正规方程推导方式、梯度下降法算法比较优化、维灾难。4. 逻辑回归涵盖逻辑回归介绍、癌症分类预测案例(良恶性乳
- 1.机器学习常用科学计算库包括基础定位、目标。2. 人工智能概述涵盖人工智能应用场景、人工智能小案例、人工智能发展必备三要素、人工智能机器学习和深度学习。3. 机器学习概述包括机器学习工作流程、什么是机器学习、模型评估(回归模型评估、拟合)、Azure机器学习模型搭建、完整机器学习项目流程。4. 机器学习基础环境安装与使用包括Jupyter Notebook使用(一级标题、Ju 1.机器学习常用科学计算库包括基础定位、目标。2. 人工智能概述涵盖人工智能应用场景、人工智能小案例、人工智能发展必备三要素、人工智能机器学习和深度学习。3. 机器学习概述包括机器学习工作流程、什么是机器学习、模型评估(回归模型评估、拟合)、Azure机器学习模型搭建、完整机器学习项目流程。4. 机器学习基础环境安装与使用包括Jupyter Notebook使用(一级标题、Ju
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签