-
63个云原生课程视频,基本上包含了整个云原生学习周期里这些都是你得花心思掌握的。内容比较细,基本上满足实操需求,涉及到容器技术、K8s、监控、运维、存储,以及比较前沿的 istio 等等……适用人群:高校学生、企业中的个人开发者以及互联网从业人员。>>>戳我查看云原生开发者学习路径 在线课程添加小助手微信k8s2222,进入云原生技术交流群
-
在边缘计算的浪潮中,AI是边缘云乃至分布式云中最重要的应用。随着边缘设备的广泛使用和性能提升,将人工智能相关的部分任务部署到边缘设备已经成为必然趋势。KubeEdge-Ianvs 子项目,作为业界首个分布式协同AI基准测试平台,基于 KubeEdge-Sedna 为算法及服务开发者提供全场景可扩展的分布式协同AI基准测试,以研发、衡量和优化分布式协同AI系统。然而在边缘设备中部署静态的AI模型往往不足以应对复杂多变的真实世界环境,因此终身学习能力对于边缘AI模型来说变得越来越重要。为了方便边缘AI算法研究者开发及测试终身学习算法在真实世界环境中的效果,KubeEdge-Ianvs 在新版本的更新中发布了支持终身学习范式的相关算法的研发与测试功能。本篇文章为大家阐释相关背景和Ianvs终身学习架构,并以 Ianvs 云机器人终身学习测试为例对 Ianvs 终身学习的特性进行介绍。欢迎关注 Ianvs 项目,持续获得第一手独家公开数据集与完善基准测试配套。开源项目GitHub地址:cid:link_4 一、背景 ▍1.1 终身学习能力对边缘模型越来越重要边缘设备所处的环境通常是不稳定的,环境变化会导致数据分布的大幅变化,即数据漂移。数据漂移会显著降低模型准确性。为了解决数据漂移问题,边缘设备需要具备动态更新模型的能力,以适应环境变化。下图展示了一个典型的终身学习算法流程框架。在该框架中,终身学习任务被定义为:已处理 N 个任务,将陆续处理 M 个任务。如何维护知识库并利用其中的模型处理这些任务是关键。终身学习的流程分为四步,首先根据之前已处理的 N 个任务初始化云端的知识库中的已知任务处理模型;然后在遇到新的任务时,从云端知识库中选取合适的模型部署到边缘端处理任务,如果新任务是已知的任务则更新原来的模型,如果遇到了未知任务则重新训练新的模型用于处理该任务;在边缘端处理好该任务后,对云端知识库进行更新;最后遇到新任务时重复前两步操作。通过以上流程可以确保边缘部署的模型具备终身学习的能力,从而可以应对数据漂移等问题带来的影响。▍1.2 业界缺少合适的终身学习测试工具目前终身学习算法相关测试工具发展较慢,目前比较成熟的测试工具只有 ContinualAI 推出的 Avalanche。Avalanche 支持的特性如下:Avalanche 支持的特性非常丰富,但是对于终身学习算法开发者来说 Avalanche 还存在一些局限性:未能覆盖终身学习全生命周期算法:支持的场景主要局限于增量学习等场景,而终身学习中任务定义、分配以及未知任务识别等流程无法体现在该 benchmark中。缺乏配套真实世界数据集:配套的数据集主要包括 Split-MNIST、Cifar10 等学术界常用的玩具测试集,缺乏适用的真实世界数据集及配套算法。研发算法难以落地:Avalanche更多面向终身学习算法的测试实验,并没有考虑未来将算法落地部署的需求。因此目前业界亟需一个更好的终身学习测试 benchmarking 工具,Ianvs 发布的非结构化终身学习新特性可以很好的解决上述问题。 二、lanvs 终身学习架构 ▍2.1 Ianvs 终身学习优势终身学习近年来得到了越来越多的关注,越来越多的边缘智能从业者认识到了终身学习的重要性。但是终身学习相比其他 AI 算法来说有着更高的研究门槛,经过我们的调研发现终身学习研发存在模型训练流程复杂、算法效果难以衡量和算法落地应用困难三大挑战。第一个挑战是终身学习模型训练流程较为复杂,比如对于一个刚入门终身学习的同学来说,可能对终身学习算法流程中的未知任务识别模块比较感兴趣,但是要想完整实现终身学习还需要填补任务定义、任务分配等模块,而这对于刚入门的同学不太友好,想复现别人的工作还需要去额外完成其他终身学习模块。针对这一挑战,KubeEdge-Ianvs 中对终身学习全生命周期的各个模块都进行了设计,包括并不限于任务定义、任务分配、未知任务识别和未知任务处理等多个终身学习核心算法模块,各个模块之间是解耦合的,用户可以只研究自己感兴趣的模块,其他模块采用默认配置即可跑通终身学习实验。第二个挑战是终身学习算法效果衡量困难,不同论文中的终身学习算法由于其测试流程不一样难以比较其工作的优劣。同时大部分论文的工作都是在 MNIST、CIFAR10 这些非真实数据集上进行的实验,由于缺乏在真实世界数据集上的测试,算法在现实世界中的实际应用效果往往要大打折扣。针对这一挑战,KubeEdge-Ianvs 中对终身学习的测试流程进行了统一,提供 BWT、FWT 等公认的终身学习系统指标,方便衡量算法效果。同时 KubeEdge-Ianvs 开源了 Cloud-Robotics 等真实世界终身学习数据集,并配套了对应的运行样例,用户可以直接开箱使用该真实世界数据集测试自己提出的算法的效果。第三个挑战是终身学习算法落地较为困难,算法研发与实际部署之间存在一定鸿沟。用户训练好的模型需要进一步封装才能实际在生产环境上使用。针对这一挑战,KubeEdge-Ianvs 在开发时就考虑到了和其姊妹项目 KubeEdge-Sedna 开源服务平台是配套兼容关系,因此在 KubeEdge-Ianvs上研发的终身学习算法可以直接迁移到 KubeEdge-Sedna平台上实现落地部署,解决了从研发到落地最后一公里的问题。总而言之,Ianvs 终身学习优势包括:覆盖终身学习全生命周期,包括任务定义、任务分配、未知任务识别和未知任务处理等多个模块,各个模块是解耦合的;统一化的测试流程,系统内置权威的终身学习测试指标,并且支持测试结果的可视化;并提供真实世界数据集用于终身学习测试,能更好测试终身学习算法在真实环境的效果;和 KubeEdge-Sedna 终身学习相兼容,研发算法可以快捷迁移到 Sedna 上实现落地部署。▍ 2.2 Ianvs 终身学习新特性Ianvs 在去年发布的 0.1.0 版本中已具备支持单任务学习范式和增量学习范式的算法研发与测试,在新版的 Ianvs 中增加了支持对终身学习范式的相关算法的研发与测试的功能,同时也为终身学习算法测试提供了新的开源数据集。主要新特性如下:特性一:覆盖终身学习全生命周期Ianvs 终身学习具体架构如下图所示,主要包括任务定义、任务分配、未知任务识别和未知任务处理等模块,覆盖终身学习全生命周期。对于已处理任务,Ianvs 通过任务定义模块,将已知任务抽象成若干个模型存储进云端知识库中。在遇到新任务时,Ianvs 首先通过未知任务识别模块判断推理样本属于未知任务还是已知任务。若是已知任务,则从云端知识库中调度对应模型部署在边侧处理该任务,同时基于已知任务样本对模型进行增量更新。若是未知任务,则 Ianvs 通过未知任务处理模块处理该任务,利用外部系统标注并重新训练新的模型用于处理该任务。处理完成后,新的任务模型或是更新后的已知任务模型再重新整合至云端知识库中。为了方便初学者使用 Ianvs,在 Ianvs 仓库中的 examples/robot/ 文件夹下提供了一个可以直接运行的样例cid:link_1 , 详细的教程在第三节。特性二:统一化的测试流程和真实世界数据集Ianvs 对终身学习测试流程进行了统一,主要参考了 NIPS2017 的论文 “Gradient Episodic Memory for Continual Learning”,复现了其中提出的 BWT 和 FWT 指标,用于评价终身学习算法的抗遗忘能力和未知任务泛化能力。Ianvs 还开源了 Cloud-Robotics 等真实世界数据集,并提供了配套的可以开箱即用的实验代码,帮助用户快速上手 Ianvs 终身学习。数据集官网链接:cid:link_5特性三:支持快捷落地部署如下图所示,Ianvs 中终身学习算法实现的组件与 Sedna 上终身学习算法实现的组件是相兼容的,因此在 Ianvs 上研发测试的算法可以无障碍迁移部署到 Sedna 上,方便相关从业人员实地部署算法。 三、lanvs 终身学习快速教程 在这章中我们通过运行 Ianvs 终身学习的 cloud-robotics 样例向大家讲解 Ianvs 终身学习的基本流程。Ianvs 安装流程以及终身学习更详细的介绍可以参考:Ianvs-lifelong-learning-tutorial相关链接:cid:link_31)首先我们需要配置好 Cloud-Robotics 的数据集,先创建数据集的文件夹,注意如果你把数据集放到别的位置,本教程中的部分路径配置也要一并修改。mkdir /datacd /datamkdir datasetscd datasetsCloud-Robotics 数据集可以根据该数据集专属网站的指示操作获得,链接:cid:link_22)下载完成后解压数据集:unzip cloud-robotics.zip3)配置好数据集后,我们可以准备运行示例代码了。Cloud-Robotics 示例运行的代码放在 /ianvs/project/ianvs/examples/robot/lifelong_learning_bench/ 下,我们首先要配置 python 路径(这里如果 Ianvs 安装位置不一样的话需要更改路径):export PYTHONPATH=$PYTHONPATH:/ianvs/project/ianvs/examples/robot/lifelong_learning_bench/testalgorithms/rfnet/RFNet4)然后我们检查一下 yaml 文件的信息:5)上图 benchmarkjob.yaml 中 workplace 是存放模型训练输出的路径,可以改成你需要的路径。6)上图 testenv-robot.yaml 中 train_url 和 test_url 是数据集索引的路径,如果你的数据集存放位置和教程不一样,则需要修改 train_url 和 test_url 的路径。7)在上图 rfnet_algorithm.yaml 中可以根据你的需求添加测试的终身学习算法,比如任务定义、任务分配等算法。本样例中提供了一个简单的示例。8)其他的配置文件暂时没有需要调整的。接下来我们就可以运行示例代码了:cd /ianvs/project/ianvs ianvs -f examples/robot/lifelong_learning_bench/benchmarkingjob.yaml 在模型终身学习任务结束后你可以看到以下内容,包括 BWT、FWT 等终身学习系统衡量指标:9)出现以上显示结果,则成功跑通了一个 Ianvs 终身学习样例!如果读者对于本次版本发布的更多细节感兴趣,欢迎查阅 Ianvs v0.2 Release Note:cid:link_0后续 KubeEdge SIG AI 将发布系列文章,陆续具体介绍终身学习全面升级的特性,欢迎各位读者继续关注社区动态。▍相关链接[1] 开源项目GitHub地址:cid:link_4[2] 数据集官网链接:cid:link_5[3] Ianvs 安装流程以及终身学习更详细的介绍链接:cid:link_3[4] Cloud-Robotics 数据集:cid:link_2[5] Ianvs v0.2 Release Note:cid:link_0
-
北京时间2023年10月13日,KubeEdge 发布 v1.15.0 版本。新版本新增多个增强功能,在边缘节点管理、边缘应用管理、边缘设备管理等方面均有大幅提升。KubeEdge v1.15.0 新增特性:支持 Windows 边缘节点基于物模型的新版本设备管理 API v1beta1发布承载 DMI 数据面的 Mapper 自定义开发框架 Mapper-Framework 发布支持边缘节点运行静态 Pod支持更多的 Kubernetes 原生插件运行在边缘节点 新特性概览 ▍支持 Windows 边缘节点随着边缘计算应用场景的不断拓展,涉及到的设备类型也越来越多,其中包括很多基于Windows 操作系统的传感器、摄像头和工控设备等,因此新版本的KubeEdge 支持在 Windows 上运行边缘节点,覆盖更多的使用场景。在 v1.15.0 版本中,KubeEdge 支持边缘节点运行在 Windows Server 2019,并且支持 Windows 容器运行在边缘节点上,将 KubeEdge 的使用场景成功拓展到 Windows 生态。Windows 版本的 EdgeCore 配置新增了 windowsPriorityClass 字段,默认为NORMAL_PRIORITY_CLASS。用户可以在 Windows 边缘主机上下载 Windows 版本的 EdgeCore 安装包[1],解压后执行如下命令即可完成 Windows 边缘节点的注册与接入,用户可以通过在云端执行 kubectl get nodes 确认边缘节点的状态,并管理边缘 Windows 应用。edgecore.exe --defaultconfig > edgecore.yaml edgecore.exe --config edgecore.yaml更多信息可参考:cid:link_3cid:link_4▍基于物模型的新版本设备管理 API v1beta1 发布v1.15.0 版本中,基于物模型的设备管理 API,包括 Device Model 与 Device Instance,从 v1alpha2 升级到了 v1beta1,新增了边缘设备数据处理相关等的配置,北向设备 API 结合南向的 DMI 接口,实现设备数据处理,API 的主要更新包括:Device Model 中按物模型标准新增了设备属性描述、设备属性类型、设备属性取值范围、设备属性单位等字段。// ModelProperty describes an individual device property / attribute like temperature / humidity etc. type ModelProperty struct { // Required: The device property name. Name string `json:"name,omitempty"` // The device property description. // +optional Description string `json:"description,omitempty"` // Required: Type of device property, ENUM: INT,FLOAT,DOUBLE,STRING,BOOLEAN,BYTES Type PropertyType `json:"type,omitempty"` // Required: Access mode of property, ReadWrite or ReadOnly. AccessMode PropertyAccessMode `json:"accessMode,omitempty"` // +optional Minimum string `json:"minimum,omitempty"` // +optional Maximum string `json:"maximum,omitempty"` // The unit of the property // +optional Unit string `json:"unit,omitempty"` }Device Instance 中内置的协议配置全部移除,包括 Modbus、Opc-UA、Bluetooth 等。用户可以通过可扩展的 Protocol 配置来设置自己的协议,以实现任何协议的设备接入。Modbus、Opc-UA、Bluetooth 等内置协议的 Mapper 不会从 mappers-go 仓库移除,并且会更新到对应的最新版本,且一直维护。type ProtocolConfig struct { // Unique protocol name // Required. ProtocolName string `json:"protocolName,omitempty"` // Any config data // +optional // +kubebuilder:validation:XPreserveUnknownFields ConfigData *CustomizedValue `json:"configData,omitempty"` } type CustomizedValue struct { Data map[string]interface{} `json:"-"` } 在 Device Instance 的设备属性中增加了数据处理的相关配置,包括设备上报频率、收集数据频率、属性是否上报云端、推送到边缘数据库等字段,数据的处理将在 Mapper 中进行。type DeviceProperty struct { ...... // Define how frequent mapper will report the value. // +optional ReportCycle int64 `json:"reportCycle,omitempty"` // Define how frequent mapper will collect from device. // +optional CollectCycle int64 `json:"collectCycle,omitempty"` // whether be reported to the cloud ReportToCloud bool `json:"reportToCloud,omitempty"` // PushMethod represents the protocol used to push data, // please ensure that the mapper can access the destination address. // +optional PushMethod *PushMethod `json:"pushMethod,omitempty"` }更多信息可参考:cid:link_5cid:link_6▍承载 DMI 数据面的 Mapper 自定义开发框架 Mapper-Framework 发布v1.15.0 版本中,对 DMI 数据面部分提供了支持,主要承载在南向的 Mapper 开发框架 Mapper-Framework中。Mapper-Framework 提供了全新的 Mapper 自动生成框架,框架中集成了 DMI 设备数据管理(数据面)能力,允许设备在边缘端或云端处理数据,提升了设备数据管理的灵活性。Mapper-Framework 能够自动生成用户的 Mapper 工程,简化用户设计实现 Mapper 的复杂度,提升 Mapper 的开发效率。DMI 设备数据面管理能力支持v1.15.0 版本 DMI 提供了数据面能力的支持,增强边缘端处理设备数据的能力。设备数据在边缘端可以按配置直接被推送至用户数据库或者用户应用,也可以通过云边通道上报至云端,用户也可以通过 API 主动拉取设备数据。设备数据管理方式更加多样化,解决了 Mapper 频繁向云端上报设备数据,易造成云边通信阻塞的问题,能够减轻云边通信的数据量,降低云边通信阻塞的风险。DMI 数据面系统架构如下图所示:Mapper 自动生成框架 Mapper-Frameworkv1.15.0 版本提出全新的 Mapper 自动生成框架 Mapper-Framework。框架中已经集成 Mapper 向云端注册、云端向 Mapper 下发 Device Model 与 Device Instance 配置信息、设备数据传输上报等功能,大大简化用户设计实现 Mapper 的开发工作,便于用户体验 KubeEdge 边缘计算平台带来的云原生设备管理体验。更多信息可参考:cid:link_7▍支持边缘节点运行 Kubernetes 静态 Pod新版本的 KubeEdge 支持了 Kubernetes 原生静态 Pod 能力,与 Kubernetes 中操作方式一致,用户可以在边缘主机的指定目录中,以 JSON 或者 YAML 的形式写入 Pod 的 Manifests 文件,Edged 会监控这个目录下的文件来创建/删除边缘静态 Pod,并在集群中创建镜像 Pod。静态 Pod 默认目录是 /etc/kubeedge/manifests,您也可以通过修改 EdgeCore 配置的 staticPodPath 字段来指定目录。更多信息可参考:cid:link_8▍支持更多的 Kubernetes 原生插件运行在边缘节点v1.15.0 版本的 KubeEdge 支持更多原生插件在边缘节点上运行。KubeEdge 提供了高扩展性的 Kubernetes 原生非资源类 API 透传框架,满足了原生插件对此类 API 的依赖。插件可以从边缘节点的 MetaServer 中获取集群 version 等信息,MetaServer 将对请求进行数据缓存,保证边缘节点网络中断时仍能正常服务。当前框架下,社区开发者将更容易的开放更多非资源类 API。开发者只需关注插件依赖的 API,而不需要考虑请求如何传递至边缘节点。更多信息可参考:cid:link_9▍升级 Kubernetes 依赖到 v1.26新版本将依赖的 Kubernetes 版本升级到 v1.26.7,您可以在云和边缘使用新版本的特性。更多信息可参考:cid:link_10 升级注意事项 新版本 v1beta1 的 Device API不兼容 v1alpha1 版本,如果您需要在 KubeEdge v1.15.0 中使用设备管理特性,您需要更新 Device API 的 yaml 配置。如果您使用 containerd 作为边缘容器运行时,您需要将 containerd 版本升级到 v1.6.0 或者更高版本,KubeEdge v1.15.0 不再支持 containerd 1.5 以及更早的版本。参考:https://kubernetes.io/blog/2022/11/18/upcoming-changes-in-kubernetes-1-26/#cri-api-removal在 KubeEdge v1.14 中,EdgeCore 已经移除了对 dockershim 的支持,边缘运行时仅支持 remote 类型,并且使用 containerd 作为默认运行时。如果您想要继续使用 docker 作为边缘运行时,您需要安装 cri-dockerd,并且在启动 EdgeCore 过程中,设置 runtimeType=remote 以及 remote-runtime-endpoint=unix:///var/run/cri-dockerd.sock。参考:cid:link_2▍致谢感谢 KubeEdge 社区技术指导委员会( TSC )、各 SIG 成员对 v1.15.0 版本开发的支持与贡献,未来 KubeEdge 将持续在新场景探索与支持、稳定性、安全性、可扩展性等方面持续发展与演进!▍相关链接[1] Windows 版本 EdgeCore 安装包:cid:link_0[2] Release Notes:cid:link_11/blob/master/CHANGELOG/CHANGELOG-1.15.md 加入KubeEdge社区 KubeEdge是业界首个云原生边缘计算框架、云原生计算基金会内部唯一孵化级边缘计算开源项目,社区已完成业界最大规模云原生边云协同高速公路项目(统一管理10万边缘节点/50万边缘应用)、业界首个云原生星地协同卫星、业界首个云原生车云协同汽车、业界首个云原生油田项目,开源业界首个分布式协同AI框架Sedna及业界首个边云协同终身学习范式,并在持续开拓创新中。KubeEdge网站 : https://kubeedge.ioGitHub地址 : cid:link_11Slack地址 : https://kubeedge.slack.com邮件列表 : https://groups.google.com/forum/#!forum/kubeedge每周社区例会 : https://zoom.us/j/4167237304Twitter : https://twitter.com/KubeEdge文档地址 : https://docs.kubeedge.io/en/latest/扫码回复“KubeEdge”进入技术交流群
-
大会介绍:5月27日-28日,GOTC 全球开源技术峰会((Global Open-source Technology Conference)在上海张江科学会堂成功举办。 GOTC是由上海浦东软件园、开放原子开源基金会、Linux 基金会亚太区和开源中国联合发起的,面向全球开发者的一场盛大开源技术盛宴。 本届大会以“Open Source, Into the Future”为主题,国际开源大咖、专家学者和产业代表齐聚一堂,超 1500 人现场参会, 540 万+人次线上直播观看,全网曝光量达3 亿+( 数据来源:CNCF),共同探讨开源未来,助力开源发展。议题分享:不同角度谈开源及开源人才培养讲师介绍:华为云云原生开源负责人王泽锋议题简介:在“Linux 基金会开源教育及人才培养峰会”分会场,各界大咖从不同角度深入探讨了国内开源教育和人才培养的重要性和挑战。此外,基于华为云在 LFOSSU x 华为云云原生人才培养计划,华为云云原生王者之路训练营,Volcano云原生批量计算公开课,KubeEdge云原生边缘计算公开课等行业人才培养领域的杰出贡献,华为获评“2022年度优秀开源人才培养企业“称号。点击视频观看本次分享精彩回放,添加小助手微信k8s2222回复KubeEdge,进入技术交流群video
-
大会介绍:5月27日-28日,GOTC 全球开源技术峰会((Global Open-source Technology Conference)在上海张江科学会堂成功举办。 GOTC是由上海浦东软件园、开放原子开源基金会、Linux 基金会亚太区和开源中国联合发起的,面向全球开发者的一场盛大开源技术盛宴。 本届大会以“Open Source, Into the Future”为主题,国际开源大咖、专家学者和产业代表齐聚一堂,超 1500 人现场参会, 540 万+人次线上直播观看,全网曝光量达3 亿+( 数据来源:CNCF),共同探讨开源未来,助力开源发展。议题分享:云原生边缘智能设备管理框架KubeEdge DMI讲师介绍:华为云云原生团队高级工程师赵然;DaoCloud 边缘计算开源技术专家刘琛林议题简介:边缘设备管理是边缘计算中的一个重要应用场景,面临诸多问题,如边缘设备生命周期管理、边缘设备映射云原生数字孪生模型、轻量级边缘框架、海量边缘设备采集的数据如何进行存储、分发、消费等等。 KubeEdge是基于Kubernetes构建的云原生边缘计算开源平台,已成为CNCF的孵化项目。KubeEdge支持复杂边云网络环境下的云边应用协同,并提供边缘设备管理框架(DMI),以云原生数字孪生模型的形式支持多种协议的边缘设备管理。 本议题介绍了KubeEdge的设备管理框架DMI。在DMI框架设计下,设备不再是单纯的数据源,而是被抽象为微服务,以云原生的方式为设备数据消费者提供数据服务。DMI框架下的设备数据访问支持多种场景,非常灵活。DMI框架可以为基于KubeEdge的边缘智能设备云原生化管理提供有力支持。 本议题为双人议题,与上海道客网络科技有限公司研发工程师、KubeEdge社区Member刘琛林共同分享。点击视频观看本次分享精彩回放,添加小助手微信k8s2222回复KubeEdge,进入技术交流群video
-
大会介绍:5月27日-28日,GOTC 全球开源技术峰会((Global Open-source Technology Conference)在上海张江科学会堂成功举办。 GOTC是由上海浦东软件园、开放原子开源基金会、Linux 基金会亚太区和开源中国联合发起的,面向全球开发者的一场盛大开源技术盛宴。 本届大会以“Open Source, Into the Future”为主题,国际开源大咖、专家学者和产业代表齐聚一堂,超 1500 人现场参会, 540 万+人次线上直播观看,全网曝光量达3 亿+( 数据来源:CNCF),共同探讨开源未来,助力开源发展。议题分享:KubeEdge 车云协同平台创新实践讲师介绍:华为云云原生开源负责人王泽锋议题简介:云原生技术栈为软件定义汽车以及车云协同平台打开了全新的演进路径。基于KubeEdge构建车云协同平台,加速了汽车软件平台的云原生化,实现从FOTA到SOTA的架构升级以及车路协同的架构统一。未来社区将继续围绕开源与业界一起推动云原生技术在汽车领域的探索与实践。点击视频观看本次分享精彩回放,添加小助手微信k8s2222回复KubeEdge,进入技术交流群videovideo
-
大会介绍:5月27日-28日,GOTC 全球开源技术峰会((Global Open-source Technology Conference)在上海张江科学会堂成功举办。 GOTC是由上海浦东软件园、开放原子开源基金会、Linux 基金会亚太区和开源中国联合发起的,面向全球开发者的一场盛大开源技术盛宴。 本届大会以“Open Source, Into the Future”为主题,国际开源大咖、专家学者和产业代表齐聚一堂,超 1500 人现场参会, 540 万+人次线上直播观看,全网曝光量达3 亿+( 数据来源:CNCF),共同探讨开源未来,助力开源发展。议题分享:Istio Ambient Mesh Present and Future讲师介绍:华为云云原生团队开源技术专家徐中虎议题简介:在“Cloud Native Summit”云原生分会场,华为云云原生团队开源技术专家, Google Open Source Peer Bonus获得者徐中虎介绍了当前 Istio 社区最热门的新技术Ambient Mesh, 并从功能、安全、资源开销等多方面与Sidecar模式对比,以辨证的角度分析Ambient Mesh对一些典型场景会非常有力,但它的发展距离生产可用,还有一段挺长的距离。点击视频观看本次分享精彩回放,添加小助手微信k8s2222回复Istio,进入技术交流群video
上滑加载中
推荐直播
-
华为AI技术发展与挑战:集成需求分析的实战指南
2024/11/26 周二 18:20-20:20
Alex 华为云学堂技术讲师
本期直播将综合讨论华为AI技术的发展现状,技术挑战,并深入探讨华为AI应用开发过程中的需求分析过程,从理论到实践帮助开发者快速掌握华为AI应用集成需求的框架和方法。
去报名 -
华为云DataArts+DWS助力企业数据治理一站式解决方案及应用实践
2024/11/27 周三 16:30-18:00
Walter.chi 华为云数据治理DTSE技术布道师
想知道数据治理项目中,数据主题域如何合理划分?数据标准及主数据标准如何制定?数仓分层模型如何合理规划?华为云DataArts+DWS助力企业数据治理项目一站式解决方案和应用实践告诉您答案!本期将从数据趋势、数据治理方案、数据治理规划及落地,案例分享四个方面来助力企业数据治理项目合理咨询规划及顺利实施。
去报名
热门标签