- 本次大赛由量子信息网络产业联盟主办,昇思MindSpore Quantum社区承办,多所高校和单位联合举办。开发者将全面体验全新一代通用量子计算框架MindSpore Quantum。全新的竞赛体验,卓越的算法性能,活跃的开源社区!诚邀您报名参赛,勇攀量子世界的高峰! 本次大赛由量子信息网络产业联盟主办,昇思MindSpore Quantum社区承办,多所高校和单位联合举办。开发者将全面体验全新一代通用量子计算框架MindSpore Quantum。全新的竞赛体验,卓越的算法性能,活跃的开源社区!诚邀您报名参赛,勇攀量子世界的高峰!
- 半导体量子芯片前言当传统计算模式趋近瓶颈时,下一代计算模式的重大变革也即将来临。在不久的将来,量子计算可以改变世界已经成为了共识。一些大公司已经开始将量子计算研究视为一场竞赛。谷歌、IBM、英特尔和微软都在持续的扩大他们的量子计算研究团队,国内阿里、百度、本源量子等一批企业也在飞速成长中。要成为科技强国不是一代人的事,必须要有传承,这离不开量子信息人才的教育和培养。希望这个栏目能给大家科普关... 半导体量子芯片前言当传统计算模式趋近瓶颈时,下一代计算模式的重大变革也即将来临。在不久的将来,量子计算可以改变世界已经成为了共识。一些大公司已经开始将量子计算研究视为一场竞赛。谷歌、IBM、英特尔和微软都在持续的扩大他们的量子计算研究团队,国内阿里、百度、本源量子等一批企业也在飞速成长中。要成为科技强国不是一代人的事,必须要有传承,这离不开量子信息人才的教育和培养。希望这个栏目能给大家科普关...
- 如今,通过人工或定制化的方式优化和融合算子可使网络的性能优化数倍,但人工定制化方式效率低且不能满足网络越来越多样化的需求。 所以MindSpore新特性图算融合就诞生了,它提供一种极简的算子达方式和泛化自动算子融合能力,将AI算力更极致地解放给用户。让我们进一步升入了解MindSpore是如何打破算子边界,让算子融合更高效。 如今,通过人工或定制化的方式优化和融合算子可使网络的性能优化数倍,但人工定制化方式效率低且不能满足网络越来越多样化的需求。 所以MindSpore新特性图算融合就诞生了,它提供一种极简的算子达方式和泛化自动算子融合能力,将AI算力更极致地解放给用户。让我们进一步升入了解MindSpore是如何打破算子边界,让算子融合更高效。
- 谈及量子科技,首先得了解什么是量子科技。量子是光子、质子、中子、电子、介子等基本粒子的统称,是目前物理世界已知的最小基本微粒。在量子力学中,科学家聚焦的是:在单个原子或次原子粒子尺度上,物质与能量的行为和相互作用。相较于宏观物理世界,量子有很多奇妙特性,诸如量子叠加和量子纠缠。量子计算就是一个令人着迷的领域…… 谈及量子科技,首先得了解什么是量子科技。量子是光子、质子、中子、电子、介子等基本粒子的统称,是目前物理世界已知的最小基本微粒。在量子力学中,科学家聚焦的是:在单个原子或次原子粒子尺度上,物质与能量的行为和相互作用。相较于宏观物理世界,量子有很多奇妙特性,诸如量子叠加和量子纠缠。量子计算就是一个令人着迷的领域……
- 量子力学作为现代物理学的基础理论,在过去几十年中取得了巨大的成功,并在许多领域展现出了巨大的应用潜力。然而,它仍然面临一些未解决的问题,如量子测量问题、量子力学与相对论的统一、退相干和纠缠保持等。未来,我们可以期待量子技术的进一步发展,包括量子计算、量子通信和量子感应等领域的突破,为人类带来更多的科学和技术进步。 量子力学作为现代物理学的基础理论,在过去几十年中取得了巨大的成功,并在许多领域展现出了巨大的应用潜力。然而,它仍然面临一些未解决的问题,如量子测量问题、量子力学与相对论的统一、退相干和纠缠保持等。未来,我们可以期待量子技术的进一步发展,包括量子计算、量子通信和量子感应等领域的突破,为人类带来更多的科学和技术进步。
- 量子通信和量子感应作为量子力学的两个重要应用领域,提供了一种全新的信息传输和测量方式。量子通信利用量子纠缠的特性实现量子隐形传态和量子密钥分发,实现了安全、高效的信息传输。量子感应利用量子态的敏感性实现高精度的测量和传感,具有重要的应用前景。随着量子技术的不断发展,我们对量子通信和量子感应的未来充满信心,期待它们为人类带来更多的科学和技术进步。 量子通信和量子感应作为量子力学的两个重要应用领域,提供了一种全新的信息传输和测量方式。量子通信利用量子纠缠的特性实现量子隐形传态和量子密钥分发,实现了安全、高效的信息传输。量子感应利用量子态的敏感性实现高精度的测量和传感,具有重要的应用前景。随着量子技术的不断发展,我们对量子通信和量子感应的未来充满信心,期待它们为人类带来更多的科学和技术进步。
- 通过双缝实验和贝尔不等式实验,我们验证了量子力学中的重要概念,并深化了对量子世界的理解。这些实验的结果为我们理解和应用量子力学提供了重要的实验支持,并推动了量子技术的发展。 通过双缝实验和贝尔不等式实验,我们验证了量子力学中的重要概念,并深化了对量子世界的理解。这些实验的结果为我们理解和应用量子力学提供了重要的实验支持,并推动了量子技术的发展。
- 量子纠缠是一种特殊的量子态,它涉及到两个或多个量子系统之间的紧密联系。当这些系统处于纠缠态时,它们之间的状态无法独立地描述,即使它们被物理上分离开来。量子纠缠是量子力学中的非局域现象,可以超越时空的距离,为我们提供了一种超越经典物理的联系方式。 量子纠缠是一种特殊的量子态,它涉及到两个或多个量子系统之间的紧密联系。当这些系统处于纠缠态时,它们之间的状态无法独立地描述,即使它们被物理上分离开来。量子纠缠是量子力学中的非局域现象,可以超越时空的距离,为我们提供了一种超越经典物理的联系方式。
- 量子计算机一、量子计算机整体架构1、量子计算的定位:异构计算量子计算领域属于一个新兴高速发展的领域,在近二十年间,不论是量子算法的研究,还是量子芯片的研发均取得了巨大的进展。由于量子计算的理论研究有限,目前所说的量子计算机并非是一个可独立完成计算任务的设备,而是一个可以对特定问题有指数级别加速的协处理器。相应的,目前所说的量子计算,如下图所示,本质上来说是一种异构运算,即在经典计算机执行计... 量子计算机一、量子计算机整体架构1、量子计算的定位:异构计算量子计算领域属于一个新兴高速发展的领域,在近二十年间,不论是量子算法的研究,还是量子芯片的研发均取得了巨大的进展。由于量子计算的理论研究有限,目前所说的量子计算机并非是一个可独立完成计算任务的设备,而是一个可以对特定问题有指数级别加速的协处理器。相应的,目前所说的量子计算,如下图所示,本质上来说是一种异构运算,即在经典计算机执行计...
- 其他类型体系的量子计算体系一、离子阴量子计算离子研量子计算在影响范围方面仅次于超导量子计算。早在2003年,基于离子阴就可以演示两比特量子算法。离子附编码量子比特主要是利用真空腔中的电场因禁少数离子,并通过激光冷却这些因禁的离子。以因禁Yb+为例,下图(a)是离子阱装置图,20个Yb+连成一排,每一个离子在超精细相互作用下产生的两个能级作为量子比特的两个能级,标记为|↑〉和|↓〉。下图(b... 其他类型体系的量子计算体系一、离子阴量子计算离子研量子计算在影响范围方面仅次于超导量子计算。早在2003年,基于离子阴就可以演示两比特量子算法。离子附编码量子比特主要是利用真空腔中的电场因禁少数离子,并通过激光冷却这些因禁的离子。以因禁Yb+为例,下图(a)是离子阱装置图,20个Yb+连成一排,每一个离子在超精细相互作用下产生的两个能级作为量子比特的两个能级,标记为|↑〉和|↓〉。下图(b...
- 量子计算的if和while所谓量子线路,从本质上是一个量子逻辑门的执行序列,它是从左至右依次执行的。即使介绍了函数调用的思想,也可以理解为这是一种简单地内联展开,即把函数中的所有逻辑门插入到调用处,自然地,可能会考虑在量子计算机的层面是否存在类似于经典计算机中的循环和分支语句。因此,就有了QIF和QWHILE。一、基于测量的跳转作为QIF和QWHILE的判断条件的对象,并不是量子比特,而是... 量子计算的if和while所谓量子线路,从本质上是一个量子逻辑门的执行序列,它是从左至右依次执行的。即使介绍了函数调用的思想,也可以理解为这是一种简单地内联展开,即把函数中的所有逻辑门插入到调用处,自然地,可能会考虑在量子计算机的层面是否存在类似于经典计算机中的循环和分支语句。因此,就有了QIF和QWHILE。一、基于测量的跳转作为QIF和QWHILE的判断条件的对象,并不是量子比特,而是...
- 常见逻辑门以及含义一、Hadamard(H)门Hadamard门是一种可将基态变为叠加态的量子逻辑门,有时简称为H门。Hadamard门作用在单比特上,它将基态|0〉变成,将基态|1〉变成。Hadamard门矩阵形式为其在线路上显示如下图所示:假设,H门作用在任意量子态|ψ〉= α|0〉+ β|1〉上面,得到新的量子态为:二、Pauli-X 门Pauli-X门作用在单量子比特上,它是经典计... 常见逻辑门以及含义一、Hadamard(H)门Hadamard门是一种可将基态变为叠加态的量子逻辑门,有时简称为H门。Hadamard门作用在单比特上,它将基态|0〉变成,将基态|1〉变成。Hadamard门矩阵形式为其在线路上显示如下图所示:假设,H门作用在任意量子态|ψ〉= α|0〉+ β|1〉上面,得到新的量子态为:二、Pauli-X 门Pauli-X门作用在单量子比特上,它是经典计...
- 随着量子计算的迅速发展,它在计算科学、数据处理和机器学习中的潜力逐渐显现。语言建模,作为自然语言处理(NLP)的核心任务,依赖于复杂的计算和大规模的数据处理。量子计算的出现为语言建模带来了前所未有的机会和挑战。本博客将详细探讨量子计算如何影响语言建模,分析其未来的发展方向,并提供使用现有工具和技术的示例代码。I. 量子计算基础A. 量子计算概述量子位(Qubit):量子计算的基本单位,与经典... 随着量子计算的迅速发展,它在计算科学、数据处理和机器学习中的潜力逐渐显现。语言建模,作为自然语言处理(NLP)的核心任务,依赖于复杂的计算和大规模的数据处理。量子计算的出现为语言建模带来了前所未有的机会和挑战。本博客将详细探讨量子计算如何影响语言建模,分析其未来的发展方向,并提供使用现有工具和技术的示例代码。I. 量子计算基础A. 量子计算概述量子位(Qubit):量子计算的基本单位,与经典...
- 引言机器学习(Machine Learning, ML)和量子计算(Quantum Computing)代表了当今计算科学中最为引人注目的两大领域。它们之间的交叉正带来前所未有的机遇和挑战。本文将深入研究机器学习与量子计算的交叉领域,详细探讨部署过程,结合实例并提供代码示例。 一、项目介绍 问题陈述传统计算机在处理复杂问题时可能面临指数级的计算复杂度,而量子计算的引入为解决这一问题提供了新... 引言机器学习(Machine Learning, ML)和量子计算(Quantum Computing)代表了当今计算科学中最为引人注目的两大领域。它们之间的交叉正带来前所未有的机遇和挑战。本文将深入研究机器学习与量子计算的交叉领域,详细探讨部署过程,结合实例并提供代码示例。 一、项目介绍 问题陈述传统计算机在处理复杂问题时可能面临指数级的计算复杂度,而量子计算的引入为解决这一问题提供了新...
- 量子计算机是一种利用量子力学特性进行信息处理的计算机。在传统的计算机中,信息以二进制的形式存在,即每个位(bit)的值都是0或1。而在量子计算机中,信息以量子比特(qubit)的形式存在,每个量子比特可以同时处于多个状态。我们需要了解一些量子力学的基本概念。量子是物质的最小单位,具有波粒二象性。量子比特是量子计算的基本单位,可以是一个单独的电子,或者是一个光子,或者是其他可以用来实现量子状态... 量子计算机是一种利用量子力学特性进行信息处理的计算机。在传统的计算机中,信息以二进制的形式存在,即每个位(bit)的值都是0或1。而在量子计算机中,信息以量子比特(qubit)的形式存在,每个量子比特可以同时处于多个状态。我们需要了解一些量子力学的基本概念。量子是物质的最小单位,具有波粒二象性。量子比特是量子计算的基本单位,可以是一个单独的电子,或者是一个光子,或者是其他可以用来实现量子状态...
上滑加载中
推荐直播
-
物联网资深专家带你轻松构建AIoT智能场景应用
2024/11/21 周四 16:30-18:00
管老师 华为云IoT DTSE技术布道师
如何轻松构建AIoT智能场景应用?本期直播将聚焦华为云设备接入平台,结合AI、鸿蒙(OpenHarmony)、大数据等技术,实现物联网端云协同创新场景,教您如何打造更有实用性及创新性的AIoT行业标杆应用。
回顾中 -
Ascend C算子编程之旅:基础入门篇
2024/11/22 周五 16:00-17:30
莫老师 昇腾CANN专家
介绍Ascend C算子基本概念、异构计算架构CANN和Ascend C基本概述,以及Ascend C快速入门,夯实Ascend C算子编程基础
即将直播 -
深入解析:华为全栈AI解决方案与云智能开放能力
2024/11/22 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播我们将重点为大家介绍华为全栈全场景AI解决方案以和华为云企业智能AI开放能力。旨在帮助开发者深入理解华为AI解决方案,并能够更加熟练地运用这些技术。通过洞悉华为解决方案,了解人工智能完整生态链条的构造。
去报名
热门标签