- TensorFlow 是一个端到端开源机器学习平台。它拥有一个全面而灵活的生态系统,其中包含各种工具、库和社区资源,可助力研究人员推动先进机器学习技术的发展,并使开发者能够轻松地构建和部署由机器学习提供支持的应用。它可以很好的支持深度学习的各种算法,可以支持多种计算平台,系统稳定性较高。TensorFlow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU高性能数值计算。 TensorFlow 是一个端到端开源机器学习平台。它拥有一个全面而灵活的生态系统,其中包含各种工具、库和社区资源,可助力研究人员推动先进机器学习技术的发展,并使开发者能够轻松地构建和部署由机器学习提供支持的应用。它可以很好的支持深度学习的各种算法,可以支持多种计算平台,系统稳定性较高。TensorFlow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU高性能数值计算。
- 史上最容易懂的RNN文章,没有数学公式 史上最容易懂的RNN文章,没有数学公式
- 深度学习基础之三分钟轻松搞明白tensor到底是个啥 深度学习基础之三分钟轻松搞明白tensor到底是个啥
- 本专栏主要讲解Python深度学习、神经网络及人工智能相关知识。本文将详细讲解循环神经网络RNN和长短期记忆网络LSTM的原理知识,并采用TensorFlow实现手写数字识别的RNN分类案例。基础性文章,希望您喜欢。 本专栏主要讲解Python深度学习、神经网络及人工智能相关知识。本文将详细讲解循环神经网络RNN和长短期记忆网络LSTM的原理知识,并采用TensorFlow实现手写数字识别的RNN分类案例。基础性文章,希望您喜欢。
- 从本篇文章开始,作者正式开始研究Python深度学习、神经网络及人工智能相关知识。本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验。基础性文章,希望对您有所帮助。 从本篇文章开始,作者正式开始研究Python深度学习、神经网络及人工智能相关知识。本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验。基础性文章,希望对您有所帮助。
- 在本教程中,您已经介绍了 PyTorch 和 TensorFlow,了解了谁在使用它们以及它们支持哪些 API,并了解了如何为您的项目选择 PyTorch 与 TensorFlow。您已经了解了每种语言、工具、数据集和模型所支持的不同编程语言,并了解了如何选择最适合您的独特风格和项目的一种。 在本教程中,您已经介绍了 PyTorch 和 TensorFlow,了解了谁在使用它们以及它们支持哪些 API,并了解了如何为您的项目选择 PyTorch 与 TensorFlow。您已经了解了每种语言、工具、数据集和模型所支持的不同编程语言,并了解了如何选择最适合您的独特风格和项目的一种。
- 可视化工具使用户能够跟踪实验指标,例如损失和准确性,可视化模型图等。可视化训练过程对于问题的发现和模型收敛效果的确定非常重要,从而优化得到较好的模型设计。 可视化工具使用户能够跟踪实验指标,例如损失和准确性,可视化模型图等。可视化训练过程对于问题的发现和模型收敛效果的确定非常重要,从而优化得到较好的模型设计。
- Tensor,它可以是0维、一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便。但它们也不相同,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。对于Tensor,从接口划分,我们大致可分为2类: Tensor,它可以是0维、一维以及多维的数组,你可以将它看作为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便。但它们也不相同,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。对于Tensor,从接口划分,我们大致可分为2类:
- @Author:Runsen GPU在gpu上训练使训练神经网络比在cpu上运行快得多Keras支持使用Tensorflow和Theano后端对gpu进行培训文档: https://keras.io/getting-started/faq/#how-can-i-run-keras-on-gpu 安装GPU首先,下载并安装CUDA&CuDNN(假设您使用的是NVIDIA gpu)安装url... @Author:Runsen GPU在gpu上训练使训练神经网络比在cpu上运行快得多Keras支持使用Tensorflow和Theano后端对gpu进行培训文档: https://keras.io/getting-started/faq/#how-can-i-run-keras-on-gpu 安装GPU首先,下载并安装CUDA&CuDNN(假设您使用的是NVIDIA gpu)安装url...
- 机器学习涉及评估模型的指标,例如损失(loss)、准确度等,以及它们如何随着训练的进行而变化。 机器学习涉及评估模型的指标,例如损失(loss)、准确度等,以及它们如何随着训练的进行而变化。
- 本系列文章旨在分享tensorflow->onnx->Caffe->wk模型转换流程,主要针对的是HI3516CV500, Hi3519AV100 支持NNIE推理框架的海思芯片的算法工程落地。 本系列文章旨在分享tensorflow->onnx->Caffe->wk模型转换流程,主要针对的是HI3516CV500, Hi3519AV100 支持NNIE推理框架的海思芯片的算法工程落地。
- 本系列文章旨在分享tensorflow->onnx->Caffe->wk模型转换流程,主要针对的是HI3516CV500, Hi3519AV100 支持NNIE推理框架的海思芯片的算法工程落地。 本系列文章旨在分享tensorflow->onnx->Caffe->wk模型转换流程,主要针对的是HI3516CV500, Hi3519AV100 支持NNIE推理框架的海思芯片的算法工程落地。
- 使用Tensorflow ,完成CIFAR-10图像识别 使用Tensorflow ,完成CIFAR-10图像识别
- tf.random_normal函数 tf.random_normal函数
- 单变量线性回归标签是我们要预测的真实事物y,特征是指用于描述数据的输入变量xi样本指数据的特定实例x,有标签样本具有{特征,标签},用于训练模型;无标签样本具有{特征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是 y=wx+b里的w和b,也叫权重和偏差?在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试... 单变量线性回归标签是我们要预测的真实事物y,特征是指用于描述数据的输入变量xi样本指数据的特定实例x,有标签样本具有{特征,标签},用于训练模型;无标签样本具有{特征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是 y=wx+b里的w和b,也叫权重和偏差?在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试...
上滑加载中
推荐直播
-
Ascend C算子编程之旅:基础入门篇
2024/11/22 周五 16:00-17:30
莫老师 昇腾CANN专家
介绍Ascend C算子基本概念、异构计算架构CANN和Ascend C基本概述,以及Ascend C快速入门,夯实Ascend C算子编程基础
回顾中 -
深入解析:华为全栈AI解决方案与云智能开放能力
2024/11/22 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播我们将重点为大家介绍华为全栈全场景AI解决方案以和华为云企业智能AI开放能力。旨在帮助开发者深入理解华为AI解决方案,并能够更加熟练地运用这些技术。通过洞悉华为解决方案,了解人工智能完整生态链条的构造。
回顾中 -
华为云DataArts+DWS助力企业数据治理一站式解决方案及应用实践
2024/11/27 周三 16:30-18:00
Walter.chi 华为云数据治理DTSE技术布道师
想知道数据治理项目中,数据主题域如何合理划分?数据标准及主数据标准如何制定?数仓分层模型如何合理规划?华为云DataArts+DWS助力企业数据治理项目一站式解决方案和应用实践告诉您答案!本期将从数据趋势、数据治理方案、数据治理规划及落地,案例分享四个方面来助力企业数据治理项目合理咨询规划及顺利实施。
去报名
热门标签