- 感受野是卷积神经网络(CNN)中关键概念,指神经元在输入数据中对应的区域大小。它影响模型对特征的捕捉能力,决定局部与全局特征的提取。单层卷积的感受野由卷积核大小、步长和填充决定;多层卷积时感受野会逐层累加扩大。合适感受野能提升模型性能,过大或过小都会影响效果。调整感受野可通过改变卷积核大小、步长或使用空洞卷积实现。深入理解感受野有助于优化CNN设计,推动AI技术发展。 感受野是卷积神经网络(CNN)中关键概念,指神经元在输入数据中对应的区域大小。它影响模型对特征的捕捉能力,决定局部与全局特征的提取。单层卷积的感受野由卷积核大小、步长和填充决定;多层卷积时感受野会逐层累加扩大。合适感受野能提升模型性能,过大或过小都会影响效果。调整感受野可通过改变卷积核大小、步长或使用空洞卷积实现。深入理解感受野有助于优化CNN设计,推动AI技术发展。
- 卷积神经网络(CNN)在图像和语音识别等领域取得显著成就,卷积核作为其核心组件发挥关键作用。卷积核是滑动于输入数据上的小矩阵,通过卷积操作提取特征,参数共享机制减少模型复杂度并提高鲁棒性。不同类型的卷积核(如标准、深度可分离和扩张卷积核)适用于多种任务,为CNN的成功奠定基础。 卷积神经网络(CNN)在图像和语音识别等领域取得显著成就,卷积核作为其核心组件发挥关键作用。卷积核是滑动于输入数据上的小矩阵,通过卷积操作提取特征,参数共享机制减少模型复杂度并提高鲁棒性。不同类型的卷积核(如标准、深度可分离和扩张卷积核)适用于多种任务,为CNN的成功奠定基础。
- 你吃过牛角甜甜圈吗(cronuts)? 这一被时代杂志称为“2013年25个最佳发明之一”的神奇美食,带着甜甜圈的可爱外貌与牛角面包的酥软内里,从美国纽约席卷全球。直到今天,世界各地的甜品店依然热衷于开发各种口味的cronuts,引得饕餮们纷纷自掏腰包。再看一眼圆圆胖胖的cronuts,各位擦擦口水回到正题,接下来,本文将介绍近年来引爆学术界的另一样“牛角甜甜圈”:Graph C... 你吃过牛角甜甜圈吗(cronuts)? 这一被时代杂志称为“2013年25个最佳发明之一”的神奇美食,带着甜甜圈的可爱外貌与牛角面包的酥软内里,从美国纽约席卷全球。直到今天,世界各地的甜品店依然热衷于开发各种口味的cronuts,引得饕餮们纷纷自掏腰包。再看一眼圆圆胖胖的cronuts,各位擦擦口水回到正题,接下来,本文将介绍近年来引爆学术界的另一样“牛角甜甜圈”:Graph C...
- 1 引言1.1 动机过去几年来,计算机视觉研究主要集中在卷积神经网络(常简称为 ConvNet 或 CNN)上。这些工作已经在广泛的分类和回归任务上实现了新的当前最佳表现。相对而言,尽管这些方法的历史可以追溯到多年前,但对这些系统得到出色结果的方式的理论理解还很滞后。事实上,当前计算机视觉领域的很多成果都是将 CNN 当作黑箱使用,这种做法是有效的,但其有效的原因却非常模糊不清,这严重满足不... 1 引言1.1 动机过去几年来,计算机视觉研究主要集中在卷积神经网络(常简称为 ConvNet 或 CNN)上。这些工作已经在广泛的分类和回归任务上实现了新的当前最佳表现。相对而言,尽管这些方法的历史可以追溯到多年前,但对这些系统得到出色结果的方式的理论理解还很滞后。事实上,当前计算机视觉领域的很多成果都是将 CNN 当作黑箱使用,这种做法是有效的,但其有效的原因却非常模糊不清,这严重满足不...
- 本文介绍由美国生物科技公司Calico Life Sciences的Han Yuan 和 David R. Kelley共同通讯发表在 Nature methods 的研究成果:单细胞ATAC-seq(scATAC)在研究表观遗传景观中的细胞异质性方面具有巨大前景,但由于数据高维性和稀疏性的特点,scATAC的分析仍然面临重大挑战... 本文介绍由美国生物科技公司Calico Life Sciences的Han Yuan 和 David R. Kelley共同通讯发表在 Nature methods 的研究成果:单细胞ATAC-seq(scATAC)在研究表观遗传景观中的细胞异质性方面具有巨大前景,但由于数据高维性和稀疏性的特点,scATAC的分析仍然面临重大挑战...
- 更传统的机器学习算法可以在ee.Classifier下找到,需要点数据作为输入。 对于卷积神经网络,我们需要图像。图像块应包含图像和标签。 陆地卫星图像和云、阴影和水的标签。 在这里以 SPARCS 数据集为例。数据可以在下面的网站上找到。 ... 更传统的机器学习算法可以在ee.Classifier下找到,需要点数据作为输入。 对于卷积神经网络,我们需要图像。图像块应包含图像和标签。 陆地卫星图像和云、阴影和水的标签。 在这里以 SPARCS 数据集为例。数据可以在下面的网站上找到。 ...
- 卷积神经网络简介 我们将深入讲解卷积神经网络的原理,以及它在计算机视觉任务上为什么如此成功。但在此之前,我们先来看一个简单的卷积神经网络示例,即使用卷积神经网络对 MNIST 数字进行分类,这个任务我们在第 2 章用密集连接网络做过(当时的测试精度为 97.8%)。虽然本例中的卷积神经网络很简单,但其精度肯定会超过第 2 章的密集连接... 卷积神经网络简介 我们将深入讲解卷积神经网络的原理,以及它在计算机视觉任务上为什么如此成功。但在此之前,我们先来看一个简单的卷积神经网络示例,即使用卷积神经网络对 MNIST 数字进行分类,这个任务我们在第 2 章用密集连接网络做过(当时的测试精度为 97.8%)。虽然本例中的卷积神经网络很简单,但其精度肯定会超过第 2 章的密集连接...
- 卷积神经网络基础 我们介绍卷积神经网络的卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 import torch from torch.autograd import Variable ... 卷积神经网络基础 我们介绍卷积神经网络的卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 import torch from torch.autograd import Variable ...
- 一、研究背景 研究鸟类鸣声有利于人们掌握其繁殖行为和生活习性等生命活动规律,从而更好地开发和利用经济鸟类,更有效保护濒危珍稀类。随着我国经济的高速发展,生态问题越来越受到重视。由于发展经济的需要,如今很... 一、研究背景 研究鸟类鸣声有利于人们掌握其繁殖行为和生活习性等生命活动规律,从而更好地开发和利用经济鸟类,更有效保护濒危珍稀类。随着我国经济的高速发展,生态问题越来越受到重视。由于发展经济的需要,如今很...
- 一、垂直边缘检测 1、图片如果是黑白的就是像素*像素*1,如果是彩色的就是像素*像素*3【后面数字是维度】3表示RGB 对图片进行卷积运算 如图所示,6x6的图片*3x3的图片=4x4的图片,计算过程如下图: 4x4每个元素的计算是把3x3的矩阵一行一行的覆盖在6x6的矩阵上,大图片每一列的元素乘以小图片的每一列然后相加... 一、垂直边缘检测 1、图片如果是黑白的就是像素*像素*1,如果是彩色的就是像素*像素*3【后面数字是维度】3表示RGB 对图片进行卷积运算 如图所示,6x6的图片*3x3的图片=4x4的图片,计算过程如下图: 4x4每个元素的计算是把3x3的矩阵一行一行的覆盖在6x6的矩阵上,大图片每一列的元素乘以小图片的每一列然后相加...
- 下面是博主认为解读st-gcn论文里两篇写的非常不错的文章,特此摘录下来以飨读者。 解读一:https://zhoef.com/2019/08/24/14_ST-Gcn/ 解读二:https://www.cnblogs.com/shyern/p/11262926.html#_label3_1 下面是博主认为解读st-gcn论文里两篇写的非常不错的文章,特此摘录下来以飨读者。 解读一:https://zhoef.com/2019/08/24/14_ST-Gcn/ 解读二:https://www.cnblogs.com/shyern/p/11262926.html#_label3_1
- 一图片识别为例来介绍一下个人理解:卷积是为了来得到特征值得,那么卷积的工作原理是什么呢?好吧就是你想的那样,卷积核运算正是卷积工作来提取特征(即图片的边缘轮廓)的原理 借用吴恩达老师的一张图 * * ... 一图片识别为例来介绍一下个人理解:卷积是为了来得到特征值得,那么卷积的工作原理是什么呢?好吧就是你想的那样,卷积核运算正是卷积工作来提取特征(即图片的边缘轮廓)的原理 借用吴恩达老师的一张图 * * ...
- 简 介: 本文选取了2021年人工神经网络第四次作业学生提交的作业。供交流使用。 关键词: 人工神经网络 ... 简 介: 本文选取了2021年人工神经网络第四次作业学生提交的作业。供交流使用。 关键词: 人工神经网络 ...
- 在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一。CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结。 在学习CNN前,推荐大家先学习DNN的... 在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一。CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结。 在学习CNN前,推荐大家先学习DNN的...
- 在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的。重点会和传统的DNN比较讨论。 1. 回顾CNN的结构 在上一篇里,我们已经讲到了CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用So... 在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的。重点会和传统的DNN比较讨论。 1. 回顾CNN的结构 在上一篇里,我们已经讲到了CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用So...
上滑加载中
推荐直播
-
DeepSeek行业运用方案
2025/02/25 周二 16:30-17:30
阿肯-华为云生态技术讲师
本期课程将带您揭秘DeepSeek在多行业的创新方案,手把手演示如何通过ModelArts在华为云上构建方案。
即将直播 -
华为云 x DeepSeek:AI驱动云上应用创新
2025/02/26 周三 16:00-18:00
华为云 AI专家大咖团
在 AI 技术飞速发展之际,DeepSeek 备受关注。它凭借哪些技术与理念脱颖而出?华为云与 DeepSeek 合作,将如何重塑产品与应用模式,助力企业数字化转型?在华为开发者空间,怎样高效部署 DeepSeek,搭建专属服务器?基于华为云平台,又该如何挖掘 DeepSeek 潜力,实现智能化升级?本期直播围绕DeepSeek在云上的应用案例,与DTSE布道师们一起探讨如何利用AI 驱动云上应用创新。
去报名
热门标签