- CNN :Convolutional Neural Networks (卷积神经网络 ) 环境准备 Python版本:Python 3.6.8 PyTorch版本:PyTorch1.1.0 RDKit版本:RDKit 2020.03.1 基于卷积神经网络(CNN)预测分子特性 导入库 from rdk... CNN :Convolutional Neural Networks (卷积神经网络 ) 环境准备 Python版本:Python 3.6.8 PyTorch版本:PyTorch1.1.0 RDKit版本:RDKit 2020.03.1 基于卷积神经网络(CNN)预测分子特性 导入库 from rdk...
- 参考:https://www.cnblogs.com/pprp/p/12456403.html 池化操作(Pooling)是CNN中非常常见的一种操作,Pooling层是模仿人的视觉系统对数据进行降维,池化操作通常也叫做子采样(Subsampling)或降采样(Downsampling),在构建卷积神经网络时,往往会用在卷积层之后,通过池化来降低卷积层输出的特征维度,有效减... 参考:https://www.cnblogs.com/pprp/p/12456403.html 池化操作(Pooling)是CNN中非常常见的一种操作,Pooling层是模仿人的视觉系统对数据进行降维,池化操作通常也叫做子采样(Subsampling)或降采样(Downsampling),在构建卷积神经网络时,往往会用在卷积层之后,通过池化来降低卷积层输出的特征维度,有效减...
- BP神经网络与卷积神经网络(CNN) 1、BP神经网络 1.1 神经网络基础 神经网络的基本组成单元是神经元。神经元的通用模型如图 1所示,其中常用的激活函数有阈值函数、sigmoid函数和双曲正切函数。 图 1 神经元模型 神经元的输出为: 神经网络是将多个神经元按一定规则联... BP神经网络与卷积神经网络(CNN) 1、BP神经网络 1.1 神经网络基础 神经网络的基本组成单元是神经元。神经元的通用模型如图 1所示,其中常用的激活函数有阈值函数、sigmoid函数和双曲正切函数。 图 1 神经元模型 神经元的输出为: 神经网络是将多个神经元按一定规则联...
- 前言 本文综合整理常用的神经网络,包括生物神经网络、人工神经网络、卷积神经网络、循环神经网络、生成对抗网络;参考了许多高校的课程、论文、博客和视频等。文章的结构是先进行概念了解,然后结合图片、结构图、一步一步详细讲解;大家要不看看? ( •̀ ω •́ )y 一、人工神经网络 简介:人工神经网络 (Artificial Neural Network, ANN),由... 前言 本文综合整理常用的神经网络,包括生物神经网络、人工神经网络、卷积神经网络、循环神经网络、生成对抗网络;参考了许多高校的课程、论文、博客和视频等。文章的结构是先进行概念了解,然后结合图片、结构图、一步一步详细讲解;大家要不看看? ( •̀ ω •́ )y 一、人工神经网络 简介:人工神经网络 (Artificial Neural Network, ANN),由...
- 前言 本文综合整理常用的神经网络,包括生物神经网络、人工神经网络、卷积神经网络、循环神经网络、生成对抗网络;参考了许多高校的课程、论文、博客和视频等。文章的结构是先进行概念了解,然后结合图片、结构图、一步一步详细讲解;大家要不看看? ( •̀ ω •́ )y 一、人工神经网络 简介:人工神经网络 (Artificial Neural ... 前言 本文综合整理常用的神经网络,包括生物神经网络、人工神经网络、卷积神经网络、循环神经网络、生成对抗网络;参考了许多高校的课程、论文、博客和视频等。文章的结构是先进行概念了解,然后结合图片、结构图、一步一步详细讲解;大家要不看看? ( •̀ ω •́ )y 一、人工神经网络 简介:人工神经网络 (Artificial Neural ...
- 一、概念了解 前言 卷积神经网络(Convolutional Neural Network, CNN),对于图像处理有出色表现,在计算机视觉中得到了广泛的应用。 卷积神经网络通过卷积层与池化层的叠加实现对输入数据的特征提取,最后连接全连接层实现分类。 基于什么提出卷积神经网络? 动物视觉系统对外界的感知是: 视觉皮层的每个神经元只响应某些特定区域的刺激(感受... 一、概念了解 前言 卷积神经网络(Convolutional Neural Network, CNN),对于图像处理有出色表现,在计算机视觉中得到了广泛的应用。 卷积神经网络通过卷积层与池化层的叠加实现对输入数据的特征提取,最后连接全连接层实现分类。 基于什么提出卷积神经网络? 动物视觉系统对外界的感知是: 视觉皮层的每个神经元只响应某些特定区域的刺激(感受...
- DL之CNN:计算机视觉之卷积神经网络经典算法简介、重要进展、改进技巧之详细攻略(建议收藏) 目录 CNN经典算法细讲 1、CNN历年冠军算法 1.1、LeNet-5 1.2、AlexNet 1.3、VGGNet DL之CNN:计算机视觉之卷积神经网络经典算法简介、重要进展、改进技巧之详细攻略(建议收藏) 目录 CNN经典算法细讲 1、CNN历年冠军算法 1.1、LeNet-5 1.2、AlexNet 1.3、VGGNet
- CNN之性能指标:卷积神经网络中常用的性能指标(IOU/AP/mAP、混淆矩阵)简介、使用方法之详细攻略 目录 CNN中常用的性能指标(IOU/AP/mAP、混淆矩阵)简介 IOU 1、IOU简介 2、混淆矩阵—Precision、Recall CNN之性能指标:卷积神经网络中常用的性能指标(IOU/AP/mAP、混淆矩阵)简介、使用方法之详细攻略 目录 CNN中常用的性能指标(IOU/AP/mAP、混淆矩阵)简介 IOU 1、IOU简介 2、混淆矩阵—Precision、Recall
- DL之CNN:卷积神经网络算法应用之卷积神经网络实践技巧(DA/DP/WI/BN/Hyperparameter/Overfitting/Regularization)、优化技术经验之详细攻略 目录 卷积神经网络实践技巧 数据增强(Data Augmentation) 数据预处理(Data Preprocessing) DL之CNN:卷积神经网络算法应用之卷积神经网络实践技巧(DA/DP/WI/BN/Hyperparameter/Overfitting/Regularization)、优化技术经验之详细攻略 目录 卷积神经网络实践技巧 数据增强(Data Augmentation) 数据预处理(Data Preprocessing)
- DL之LeNet-5:LeNet-5算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 LeNet-5算法的简介(论文介绍) LeNet-5算法的架构详解 1、LeNet-5 结构分析 2、各层详细说明 3、以手写数字3为例详细理解LeNet-5算法过程 4、LeNet-5为例可视化 5、LeNet-5算法的设计思路 Le... DL之LeNet-5:LeNet-5算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 LeNet-5算法的简介(论文介绍) LeNet-5算法的架构详解 1、LeNet-5 结构分析 2、各层详细说明 3、以手写数字3为例详细理解LeNet-5算法过程 4、LeNet-5为例可视化 5、LeNet-5算法的设计思路 Le...
- DL之CNN:关于CNN(卷积神经网络)经典论文原文(1950~2018)简介总结框架结构图(非常有价值)之持续更新(吐血整理) 导读 关于CNN,迄今为止已经提出了各种网络结构。其中特别重要的两个网络,一个是在1998 年首次被提出的CNN元祖LeNet,另一个是在深度学习受到关注的2012 年被提出的AlexNet。这两个神经网络架构,在整个计算机视觉... DL之CNN:关于CNN(卷积神经网络)经典论文原文(1950~2018)简介总结框架结构图(非常有价值)之持续更新(吐血整理) 导读 关于CNN,迄今为止已经提出了各种网络结构。其中特别重要的两个网络,一个是在1998 年首次被提出的CNN元祖LeNet,另一个是在深度学习受到关注的2012 年被提出的AlexNet。这两个神经网络架构,在整个计算机视觉...
- DL之CNN优化技术:卷积神经网络算法简介之特有的优化技术及其代码实现——im2col技术等技术 目录 im2col技术 im2col简介 im2col代码实现 im2col技术 im2col简介 1、im2col 的示意图 2、将滤波器的应用区域从头开始依次横向展开为1列 3、卷积运算的滤波器处理的细节:将滤波器纵向... DL之CNN优化技术:卷积神经网络算法简介之特有的优化技术及其代码实现——im2col技术等技术 目录 im2col技术 im2col简介 im2col代码实现 im2col技术 im2col简介 1、im2col 的示意图 2、将滤波器的应用区域从头开始依次横向展开为1列 3、卷积运算的滤波器处理的细节:将滤波器纵向...
- DL之CNN:卷积神经网络算法简介之原理简介——CNN网络的3D可视化(LeNet-5为例可视化) CNN网络的3D可视化 3D可视化地址:http://scs.ryerson.ca/~aharley/vis/conv/ 1、LeNet-5为例可视化 &... DL之CNN:卷积神经网络算法简介之原理简介——CNN网络的3D可视化(LeNet-5为例可视化) CNN网络的3D可视化 3D可视化地址:http://scs.ryerson.ca/~aharley/vis/conv/ 1、LeNet-5为例可视化 &...
- DL之CNN优化技术:学习卷积神经网络CNN的优化、调参实践、从代码深刻认知CNN架构之练习技巧 目录 卷积神经网络CNN调参学习实践 练习技巧 1、练习攻略一 2、VGG16练习攻略二 卷积神经网络CNN调参学习实践 DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functio... DL之CNN优化技术:学习卷积神经网络CNN的优化、调参实践、从代码深刻认知CNN架构之练习技巧 目录 卷积神经网络CNN调参学习实践 练习技巧 1、练习攻略一 2、VGG16练习攻略二 卷积神经网络CNN调参学习实践 DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functio...
- 来源:Medium 编译:weakish 编者按:Dave Smith使用Excel电子表格深入浅出地讲解了卷积神经网络(CNN)是如何识别人脸的。 当你入门的时候,可能觉得机器学习很复杂……甚至很可怕。另一方面,电子表格却很简单。电子表格并不酷炫,但却能避免分散你的注意力,同时帮助你以直观的方式可视化代码后面发生的事... 来源:Medium 编译:weakish 编者按:Dave Smith使用Excel电子表格深入浅出地讲解了卷积神经网络(CNN)是如何识别人脸的。 当你入门的时候,可能觉得机器学习很复杂……甚至很可怕。另一方面,电子表格却很简单。电子表格并不酷炫,但却能避免分散你的注意力,同时帮助你以直观的方式可视化代码后面发生的事...
上滑加载中
推荐直播
-
让你的应用用上GaussDB
2024/12/19 周四 16:30-18:00
Jerry 华为云生态技术讲师
GaussDB很受客户关注,伙伴们想知道什么时候该选用,开发者也跃跃欲试想尝鲜。课程会分享适用的场景,并一步步演示如何用上GaussDB。
即将直播 -
2024创原会年度技术峰会
2024/12/20 周五 09:00-12:00
华为云讲师团
2024创原会年度技术峰会将于12月20日在海南万宁石梅湾威斯汀酒店举办,本次大会将以“智能・进化”为主题探讨从Cloud Native到AI Native的新阶段企业如何通过AI技术重塑企业应用,围绕AI如何在千行万业落地进行深入交流,探索可以先行先试先成功的创新场景和实现路径。
即将直播 -
华为云开发者日·2024年度创享峰会
2024/12/23 周一 14:00-16:00
华为云讲师团
华为云开发者日HDC.Cloud Day是面向全球开发者的旗舰活动,汇聚来自千行百业、高校及科研院所的开发人员。致力于打造开发者专属的技术盛宴,全方位服务与赋能开发者围绕华为云生态“知、学、用、创、商”的成长路径。通过前沿的技术分享、场景化的动手体验、优秀的应用创新推介,为开发者提供沉浸式学习与交流平台。开放创新,与开发者共创、共享、共赢未来。
去报名
热门标签