- 开发者
- 机器学习
#机器学习#
- 本书摘自《Spark机器学习进阶实战》——书中的第1章,第1.1.1节,作者是马海平、于俊、吕昕、向海。 本书摘自《Spark机器学习进阶实战》——书中的第1章,第1.1.1节,作者是马海平、于俊、吕昕、向海。
- 本书摘自《深度学习之TensorFlow入门、原理与进阶实战》一书中的第1章,第1.1节,编著是李金洪. 本书摘自《深度学习之TensorFlow入门、原理与进阶实战》一书中的第1章,第1.1节,编著是李金洪.
- 前段时间微信里有个小程序“猜画小歌”特别火,你可以在手机上画简笔画让机器识别,还可以和朋友一起比赛,看看谁是灵魂画手。 前段时间微信里有个小程序“猜画小歌”特别火,你可以在手机上画简笔画让机器识别,还可以和朋友一起比赛,看看谁是灵魂画手。
- 假设,有一张大小为32×32×3的输入图片,这是一张RGB模式的图片,你想做手写体数字识别。32×32×3的RGB图片中含有某个数字,比如7,你想识别它是从0-9这10个数字中的哪一个,我们构建一个神经网络来实现这个功能。打开百度App,看更多图片我用的这个网络模型和经典网络LeNet-5非常相似,灵感也来源于此。LeNet-5是多年前Yann LeCun创建的,我所采用的模型并不是LeNe... 假设,有一张大小为32×32×3的输入图片,这是一张RGB模式的图片,你想做手写体数字识别。32×32×3的RGB图片中含有某个数字,比如7,你想识别它是从0-9这10个数字中的哪一个,我们构建一个神经网络来实现这个功能。打开百度App,看更多图片我用的这个网络模型和经典网络LeNet-5非常相似,灵感也来源于此。LeNet-5是多年前Yann LeCun创建的,我所采用的模型并不是LeNe...
- 今天继续分享卷积神经网络,常常用深度学习这个术语来指训练神经网络的过程,有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?我们先来看一些直观的基础知识。让我们从一个房价预测的例子开始讲起。假设你有一个数据集,它包含了六栋房子的信息。所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格。这时,你想要拟合一个根据房屋面积预测房价的函数。如果你对线性回归很熟悉,你可能会说... 今天继续分享卷积神经网络,常常用深度学习这个术语来指训练神经网络的过程,有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?我们先来看一些直观的基础知识。让我们从一个房价预测的例子开始讲起。假设你有一个数据集,它包含了六栋房子的信息。所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格。这时,你想要拟合一个根据房屋面积预测房价的函数。如果你对线性回归很熟悉,你可能会说...
- 对于计算机视觉应用来说,你肯定不想它只处理小图片,你希望它同时也要能处理大图。为此,你需要进行卷积计算,它是卷积神经网络中非常重要的一块。 对于计算机视觉应用来说,你肯定不想它只处理小图片,你希望它同时也要能处理大图。为此,你需要进行卷积计算,它是卷积神经网络中非常重要的一块。
- MoXing的概念 MoXing是华为云深度学习服务提供的网络模型开发API。相对于TensorFlow和MXNet等原生API,MoXing API让模型的代码编写更加简单,允许用户只需要关心数据输入(input_fn)和模型构建(model_fn)的代码,即可实现任意模型在多GPU和分布式下的高性能运行。MoXing-TensorFlow支持原生TensorFlow、Kera... MoXing的概念 MoXing是华为云深度学习服务提供的网络模型开发API。相对于TensorFlow和MXNet等原生API,MoXing API让模型的代码编写更加简单,允许用户只需要关心数据输入(input_fn)和模型构建(model_fn)的代码,即可实现任意模型在多GPU和分布式下的高性能运行。MoXing-TensorFlow支持原生TensorFlow、Kera...
- 在Windows平台下使用OpenCV将图片合成视频, 输入为图片存放的文件夹路径即可。支持设置视频编码格式,宽度,高度,帧数,以及是否简单的翻转图片。 在Windows平台下使用OpenCV将图片合成视频, 输入为图片存放的文件夹路径即可。支持设置视频编码格式,宽度,高度,帧数,以及是否简单的翻转图片。
- 本文首先回顾了一些传统的激活函数和注意力机制,然后解读了一种“注意力机制下的激活函数”,也就是自适应参数化修正线性单元(Adaptively Parametric Rectifier Linear Unit,APReLU)。1. 激活函数激活函数是目前人工神经网络的核心组成部分之一,其作用是进行人工神经网络的非线性化。我们首先回顾一些最为常见的激活函数,包括Sigmoid激活函数、Tanh激... 本文首先回顾了一些传统的激活函数和注意力机制,然后解读了一种“注意力机制下的激活函数”,也就是自适应参数化修正线性单元(Adaptively Parametric Rectifier Linear Unit,APReLU)。1. 激活函数激活函数是目前人工神经网络的核心组成部分之一,其作用是进行人工神经网络的非线性化。我们首先回顾一些最为常见的激活函数,包括Sigmoid激活函数、Tanh激...
- 深度残差网络ResNet获得了2016年IEEE Conference on Computer Vision and Pattern Recognition的最佳论文奖,目前在谷歌学术的引用量已高达38295次。残差收缩网络是深度残差网络的一种的改进版本,其实是深度残差网络、注意力机制和软阈值函数的集成。在一定程度上,残差收缩网络的工作原理,可以理解为:通过注意力机制注意到不重要的特征,通过... 深度残差网络ResNet获得了2016年IEEE Conference on Computer Vision and Pattern Recognition的最佳论文奖,目前在谷歌学术的引用量已高达38295次。残差收缩网络是深度残差网络的一种的改进版本,其实是深度残差网络、注意力机制和软阈值函数的集成。在一定程度上,残差收缩网络的工作原理,可以理解为:通过注意力机制注意到不重要的特征,通过...
- 深度残差收缩网络其实是一种通用的特征学习方法,是深度残差网络ResNet、注意力机制和软阈值化的集成,可以用于图像分类。本文采用TensorFlow 1.0和TFLearn 0.3.2,编写了图像分类的程序,采用的图像数据为CIFAR-10。CIFAR-10是一个非常常用的图像数据集,包含10个类别的图像。可以在这个网址找到具体介绍:https://www.cs.toronto.edu/~k... 深度残差收缩网络其实是一种通用的特征学习方法,是深度残差网络ResNet、注意力机制和软阈值化的集成,可以用于图像分类。本文采用TensorFlow 1.0和TFLearn 0.3.2,编写了图像分类的程序,采用的图像数据为CIFAR-10。CIFAR-10是一个非常常用的图像数据集,包含10个类别的图像。可以在这个网址找到具体介绍:https://www.cs.toronto.edu/~k...
- 深度残差收缩网络(Deep Residual Shrinkage Network)是深度残差学习(Deep Residual Network, ResNet)的一种改进,发表在IEEE Transactions on Industrial Informatics上,面向的是数据包含噪声的情况。实验部分将所提出的两种深度残差收缩网络,即“通道之间共享阈值的深度残差收缩网络(Deep Resid... 深度残差收缩网络(Deep Residual Shrinkage Network)是深度残差学习(Deep Residual Network, ResNet)的一种改进,发表在IEEE Transactions on Industrial Informatics上,面向的是数据包含噪声的情况。实验部分将所提出的两种深度残差收缩网络,即“通道之间共享阈值的深度残差收缩网络(Deep Resid...
- 对于基于深度学习的分类算法,其关键不仅在于提取与标签相关的目标信息,剔除无关的信息也是非常重要的,所以要在深度神经网络中引入软阈值化。阈值的自动设置,是深度残差收缩网络的核心贡献。需要注意的是,软阈值化中的阈值,需要满足一定的条件。这篇文章中的阈值设置,事实上,是在注意力机制下进行的。下面分别介绍阈值需要满足的条件、注意力机制以及具体的阈值设置方法。(1)阈值需要满足的条件在软阈值化中,阈值... 对于基于深度学习的分类算法,其关键不仅在于提取与标签相关的目标信息,剔除无关的信息也是非常重要的,所以要在深度神经网络中引入软阈值化。阈值的自动设置,是深度残差收缩网络的核心贡献。需要注意的是,软阈值化中的阈值,需要满足一定的条件。这篇文章中的阈值设置,事实上,是在注意力机制下进行的。下面分别介绍阈值需要满足的条件、注意力机制以及具体的阈值设置方法。(1)阈值需要满足的条件在软阈值化中,阈值...
- 深度残差收缩网络(Deep Residual Shrinkage Network)是深度残差学习(Deep Residual Network, ResNet)的一种改进,发表在IEEE Transactions on Industrial Informatics上,面向的是数据包含噪声的情况。(1)回顾一下深度残差网络的结构在下图中,(a)-(c)分别是三种残差模块,(d)是深度残差网络的整... 深度残差收缩网络(Deep Residual Shrinkage Network)是深度残差学习(Deep Residual Network, ResNet)的一种改进,发表在IEEE Transactions on Industrial Informatics上,面向的是数据包含噪声的情况。(1)回顾一下深度残差网络的结构在下图中,(a)-(c)分别是三种残差模块,(d)是深度残差网络的整...
- 深度残差收缩网络(Deep Residual Shrinkage Network)是深度残差学习(Deep Residual Network, ResNet)的一种改进,发表在IEEE Transactions on Industrial Informatics上,面向的是数据包含噪声的情况。其实,这篇文章的摘要很好地总结了整体的思路。一共四句话,非常简明扼要。我们首先来翻译一下论文的摘要:... 深度残差收缩网络(Deep Residual Shrinkage Network)是深度残差学习(Deep Residual Network, ResNet)的一种改进,发表在IEEE Transactions on Industrial Informatics上,面向的是数据包含噪声的情况。其实,这篇文章的摘要很好地总结了整体的思路。一共四句话,非常简明扼要。我们首先来翻译一下论文的摘要:...
上滑加载中
推荐直播
-
深度解析鸿蒙应用入门级开发者认证
2024/12/04 周三 16:00-18:00
Edi 华为云学堂技术讲师
本期直播将为开发者带来HCCDA-HarmonyOS&Cloud Apps认证课程系统介绍、详细阐述HarmonyOS 技术架构、理解HarmonyOS 技术理念,通过实例带领开发者应用快速上手。
回顾中 -
鸿蒙应用入门:轻松掌握ArkTS开发语言
2024/12/05 周四 16:00-18:00
Edi 华为云学堂技术讲师
本期直播课旨在让开发者了解ArkTS语法、轻松掌握ArkUI组件开发,带你零门槛入门鸿蒙开发,掌握状态管理实验和渲染控制实验。
即将直播 -
人工智能应用测试深度解析:理论基础与实践应用指南
2024/12/06 周五 14:30-16:30
Alex 华为云学堂技术讲师
本期直播主要结合理论及人工智能的相关实验,给大家讲述AI应用测试的主要流程和方法。帮助开发者了解AI应用测试的理论及方法,和AI应用测试在模型迭代调优过程中的作用。
去报名
热门标签