- 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图
- 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯
- 本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基 本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基
- 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯
- 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图
- 贪心算法解决最小生成树问题在多个领域都有广泛应用,特别是在需要以最小成本或最短路径将多个节点连接起来,同时保证连通性的场景中,为实际的系统设计、资源分配和路径规划等提供了有效的优化方案,有助于提高系统的性能和降低成本。 贪心算法解决最小生成树问题在多个领域都有广泛应用,特别是在需要以最小成本或最短路径将多个节点连接起来,同时保证连通性的场景中,为实际的系统设计、资源分配和路径规划等提供了有效的优化方案,有助于提高系统的性能和降低成本。
- 在程序设计和算法竞赛中,**丑数**问题是一个经典的动态规划题目。丑数(Ugly Number)定义为只包含质因子 2、3 和 5 的数。举例来说,数字 6(因子为 2 和 3)、数字 8(因子为 2)都是丑数,而数字 14 不是丑数,因为它包含质因子 7。在这种定义下,1 通常被视为第一个丑数。 在程序设计和算法竞赛中,**丑数**问题是一个经典的动态规划题目。丑数(Ugly Number)定义为只包含质因子 2、3 和 5 的数。举例来说,数字 6(因子为 2 和 3)、数字 8(因子为 2)都是丑数,而数字 14 不是丑数,因为它包含质因子 7。在这种定义下,1 通常被视为第一个丑数。
- 本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基 本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基
- 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯
- 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图 本教程的知识点为:机器学习(常用科学计算库的使用)基础定位 机器学习概述 机器学习概述 1.5 机器学习算法分类 1 监督学习 机器学习概述 1.7 Azure机器学习模型搭建实验 Azure平台简介 Matplotlib 3.2 基础绘图功能 — 以折线图为例 1 完善原始折线图 — 给图形添加辅助功能 Matplotlib 3.3 常见图形绘制 1 常见图
- defense_methods2024年12月14日更新前面我们实现了多种模型的成员推理攻击,接下来我们将针对其防御方法及其原理进行一个简单的介绍,并进行简单的代码实现,给用户提供一个详细的帮助文档。 目录基本介绍常用方法介绍简单实现 基本介绍机器学习中的成员推理攻击指的是攻击者可以通过观察机器学习模型的输出,来推断训练数据中是否包含了特定的样本。这种攻击技术可以通过观察模型的输出统计信息... defense_methods2024年12月14日更新前面我们实现了多种模型的成员推理攻击,接下来我们将针对其防御方法及其原理进行一个简单的介绍,并进行简单的代码实现,给用户提供一个详细的帮助文档。 目录基本介绍常用方法介绍简单实现 基本介绍机器学习中的成员推理攻击指的是攻击者可以通过观察机器学习模型的输出,来推断训练数据中是否包含了特定的样本。这种攻击技术可以通过观察模型的输出统计信息...
- java中“==”和equals,究竟比的是什么 java中“==”和equals,究竟比的是什么
- 第十一届传感云和边缘计算系统国际会议 2025 11th International Conference on Sensor-Cloud and Edge Computing System (SCECS2025) 第十一届传感云和边缘计算系统国际会议 2025 11th International Conference on Sensor-Cloud and Edge Computing System (SCECS2025)
- java实现“数据平滑升级” java实现“数据平滑升级”
- 华为OD机试真题-贪吃的猴子 介绍“贪吃的猴子”问题通常涉及在特定规则下分配资源,以满足某种优化目标。这个问题可以类比于经典的贪婪算法的应用,用来解决资源分配或路径规划等问题。 题目描述假设有一个猴子,它每天会消耗掉一些食物,如果到了某一天食物不够,则需要提前准备。通常问题会给出每日的食物需求和初始食物数量,要求计算出在尽可能少的补充情况下,猴子能坚持几天。 应用使用场景库存管理:帮助企业... 华为OD机试真题-贪吃的猴子 介绍“贪吃的猴子”问题通常涉及在特定规则下分配资源,以满足某种优化目标。这个问题可以类比于经典的贪婪算法的应用,用来解决资源分配或路径规划等问题。 题目描述假设有一个猴子,它每天会消耗掉一些食物,如果到了某一天食物不够,则需要提前准备。通常问题会给出每日的食物需求和初始食物数量,要求计算出在尽可能少的补充情况下,猴子能坚持几天。 应用使用场景库存管理:帮助企业...
上滑加载中
推荐直播
-
华为云 x DeepSeek:AI驱动云上应用创新
2025/02/26 周三 16:00-18:00
华为云 AI专家大咖团
在 AI 技术飞速发展之际,DeepSeek 备受关注。它凭借哪些技术与理念脱颖而出?华为云与 DeepSeek 合作,将如何重塑产品与应用模式,助力企业数字化转型?在华为开发者空间,怎样高效部署 DeepSeek,搭建专属服务器?基于华为云平台,又该如何挖掘 DeepSeek 潜力,实现智能化升级?本期直播围绕DeepSeek在云上的应用案例,与DTSE布道师们一起探讨如何利用AI 驱动云上应用创新。
回顾中 -
智能观测进化论系列沙龙(第一期)
2025/02/28 周五 14:00-16:30
华为及外部讲师团
本期直播就智能化可观测技术的融合与创新、落地与实践、瓶颈与未来等业界关心的话题进行深入探讨。
回顾中 -
聚焦Deepseek,洞察开发者生态发展
2025/02/28 周五 19:00-20:30
蒋涛 csdn创始人
深入剖析Deepseek爆发后,中国开发者生态潜藏的巨大发展潜能与未来走向,精准提炼出可供大家把握的时代机遇,干货满满,不容错过。
回顾中
热门标签