- 1、桶排序(Bucket Sort)桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。 1.1 算法描述设置一个定量的数组当作空桶;遍历输入数据,并且把数据一个一个放到对应... 1、桶排序(Bucket Sort)桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。 1.1 算法描述设置一个定量的数组当作空桶;遍历输入数据,并且把数据一个一个放到对应...
- 1、计数排序(Counting Sort)计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。1.1 算法描述找出待排序的数组中最大和最小的元素;统计数组中每个值为i的元素出现的次数,存入数组C的第i项;对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);反向填充... 1、计数排序(Counting Sort)计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。1.1 算法描述找出待排序的数组中最大和最小的元素;统计数组中每个值为i的元素出现的次数,存入数组C的第i项;对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);反向填充...
- 1、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。 1.1 算法描述把长度为n的输入序列分成两个长度为n/2的子序列;对这两个子序列分别采用归并排... 1、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。 1.1 算法描述把长度为n的输入序列分成两个长度为n/2的子序列;对这两个子序列分别采用归并排...
- 1、堆排序(Heap Sort)堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。 1.1 算法描述将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-... 1、堆排序(Heap Sort)堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。 1.1 算法描述将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-...
- 1、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 1.1 算法描述n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如... 1、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 1.1 算法描述n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如...
- 1、希尔排序(Shell Sort)1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。 1.1 算法描述先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;按增量序列个数k,对序列进行k ... 1、希尔排序(Shell Sort)1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。 1.1 算法描述先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;按增量序列个数k,对序列进行k ...
- 1、插入排序(Insertion Sort)插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。 1.1 算法描述一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:从第一个元素开始,该元素可以认为已经被排序;取出下一个元素,在已经排序的元素序列中从后... 1、插入排序(Insertion Sort)插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。 1.1 算法描述一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:从第一个元素开始,该元素可以认为已经被排序;取出下一个元素,在已经排序的元素序列中从后...
- 0、算法概述 0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。 0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a... 0、算法概述 0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。 0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a...
- 1、快速排序(Quick Sort)快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 1.1 算法描述快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:从数列中挑出一个元素,称为 “基准”(pivot);重新排序数列,所有元素比基准... 1、快速排序(Quick Sort)快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 1.1 算法描述快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:从数列中挑出一个元素,称为 “基准”(pivot);重新排序数列,所有元素比基准...
- 1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。 1.1 算法描述比较相邻的元素。如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作... 1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。 1.1 算法描述比较相邻的元素。如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作...
- 哈希查找的实际目的其实非常简单,就是利用空间换时间.哈希技术是在记录的存储位置和记录的关键字之间建立一个确定的对应关系f,使得每个关键字key对应一个存储位置f(key)。查找时,根据这个确定的对应关系找到给定值的映射f(key),若查找集合中存在这个记录,则必定在f(key)的位置上。哈希技术既是一种存储方法,也是一种查找方法。 示例:namespace HashSearch.CSharp... 哈希查找的实际目的其实非常简单,就是利用空间换时间.哈希技术是在记录的存储位置和记录的关键字之间建立一个确定的对应关系f,使得每个关键字key对应一个存储位置f(key)。查找时,根据这个确定的对应关系找到给定值的映射f(key),若查找集合中存在这个记录,则必定在f(key)的位置上。哈希技术既是一种存储方法,也是一种查找方法。 示例:namespace HashSearch.CSharp...
- 分块查找要求是顺序表,分块查找又称索引顺序查找,它是顺序查找的一种改进方法。将n个数据元素"按块有序"划分为m块(m ≤ n)。每一块中的结点不必有序,但块与块之间必须"按块有序";即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……1、先选取各块中的最大关键字构成一个索引表;2、查找分两个部分:先对索引表进行二分查找或顺序查找... 分块查找要求是顺序表,分块查找又称索引顺序查找,它是顺序查找的一种改进方法。将n个数据元素"按块有序"划分为m块(m ≤ n)。每一块中的结点不必有序,但块与块之间必须"按块有序";即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……1、先选取各块中的最大关键字构成一个索引表;2、查找分两个部分:先对索引表进行二分查找或顺序查找...
- 二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:若左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;左、右子树也分别为二叉排序树。二叉树查找需要先生成一个二叉排序树,再遍历所有节点逐一比较其值与关键字是否相同,相同则返回;若一直找不到,则返回-1。 示例:public class BSTNode { p... 二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:若左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;左、右子树也分别为二叉排序树。二叉树查找需要先生成一个二叉排序树,再遍历所有节点逐一比较其值与关键字是否相同,相同则返回;若一直找不到,则返回-1。 示例:public class BSTNode { p...
- 插值查找是二分查找的更高效版本,它不会每次按2平分原问题规模,而是应用一个技巧来尽快的接近目标关键字。 示例public class Program { public static void Main(string[] args) { int[] array = { 8, 11, 21, 28, 32, 43, 48, 56, 69, 72, 80, 94 }; ... 插值查找是二分查找的更高效版本,它不会每次按2平分原问题规模,而是应用一个技巧来尽快的接近目标关键字。 示例public class Program { public static void Main(string[] args) { int[] array = { 8, 11, 21, 28, 32, 43, 48, 56, 69, 72, 80, 94 }; ...
- Winform常见笔面试题 1. 如何设置窗体页面的默认提交按钮?设置Form的AcceptButton属性,将用户按Enter时,就相当于单击了AcceptButton属性指定的按钮,就会引发它的Click事件。 2. 怎么让一个窗体在运行时,只能打开一个?1)可以通过遍历Application的OpenedForms集合,从中如果找到了该Form,将其激活即可2)给该Form定义静态创... Winform常见笔面试题 1. 如何设置窗体页面的默认提交按钮?设置Form的AcceptButton属性,将用户按Enter时,就相当于单击了AcceptButton属性指定的按钮,就会引发它的Click事件。 2. 怎么让一个窗体在运行时,只能打开一个?1)可以通过遍历Application的OpenedForms集合,从中如果找到了该Form,将其激活即可2)给该Form定义静态创...
上滑加载中
推荐直播
-
华为云 x DeepSeek:AI驱动云上应用创新
2025/02/26 周三 16:00-18:00
华为云 AI专家大咖团
在 AI 技术飞速发展之际,DeepSeek 备受关注。它凭借哪些技术与理念脱颖而出?华为云与 DeepSeek 合作,将如何重塑产品与应用模式,助力企业数字化转型?在华为开发者空间,怎样高效部署 DeepSeek,搭建专属服务器?基于华为云平台,又该如何挖掘 DeepSeek 潜力,实现智能化升级?本期直播围绕DeepSeek在云上的应用案例,与DTSE布道师们一起探讨如何利用AI 驱动云上应用创新。
回顾中
热门标签