- 原文链接论文地址:https://openaccess.thecvf.com/content_cvpr_2018/papers/He_A_Twofold_Siamese_CVPR_2018_paper.pdf 摘要1.本文核心一:将图像分类任务中的语义特征(Semantic features)与相似度匹配任务中的外观特征(Appearance features)互补结合,非常适合与目标跟踪任... 原文链接论文地址:https://openaccess.thecvf.com/content_cvpr_2018/papers/He_A_Twofold_Siamese_CVPR_2018_paper.pdf 摘要1.本文核心一:将图像分类任务中的语义特征(Semantic features)与相似度匹配任务中的外观特征(Appearance features)互补结合,非常适合与目标跟踪任...
- 原文链接 SiamFC网络<图中z代表的是模板图像,算法中使用的是第一帧的ground truth;x代表的是search region,代表在后面的待跟踪帧中的候选框搜索区域;ϕ代表的是一种特征映射操作,将原始图像映射到特定的特征空间,文中采用的是CNN中的卷积层和pooling层;6×6×128代表z经过ϕ后得到的特征,是一个128通道6×6大小feature,同理,22×22×128是... 原文链接 SiamFC网络<图中z代表的是模板图像,算法中使用的是第一帧的ground truth;x代表的是search region,代表在后面的待跟踪帧中的候选框搜索区域;ϕ代表的是一种特征映射操作,将原始图像映射到特定的特征空间,文中采用的是CNN中的卷积层和pooling层;6×6×128代表z经过ϕ后得到的特征,是一个128通道6×6大小feature,同理,22×22×128是...
- 摘要GhostNet网络是2019年的发布的轻量级网络,速度和MobileNetV3相似,但是识别的准确率比MobileNetV3高,在ImageNet ILSVRC-2012分类数据集的达到了75.7%的top-1精度。论文链接:https://arxiv.org/abs/1911.11907作者解读:https://zhuanlan.zhihu.com/p/109325275开源代码:... 摘要GhostNet网络是2019年的发布的轻量级网络,速度和MobileNetV3相似,但是识别的准确率比MobileNetV3高,在ImageNet ILSVRC-2012分类数据集的达到了75.7%的top-1精度。论文链接:https://arxiv.org/abs/1911.11907作者解读:https://zhuanlan.zhihu.com/p/109325275开源代码:...
- @toc 1、keras介绍 tf.keras 是 tensorflow2 引入的高封装度的框架,可以用于快速搭建神经网 络模型,keras 为支持快速实验而生,能够把想法迅速转换为结果,是深度学习 框架之中最终易上手的一个,它提供了一致而简洁的 API,能够极大地减少一般 应用下的工作量,提高代码地封装程度和复用性。 文档地址:https://tensorflow.google.cn/... @toc 1、keras介绍 tf.keras 是 tensorflow2 引入的高封装度的框架,可以用于快速搭建神经网 络模型,keras 为支持快速实验而生,能够把想法迅速转换为结果,是深度学习 框架之中最终易上手的一个,它提供了一致而简洁的 API,能够极大地减少一般 应用下的工作量,提高代码地封装程度和复用性。 文档地址:https://tensorflow.google.cn/...
- @toc 1、卷积的概念 卷积的概念:卷积可以认为是一种有效提取图像特征的方法。一般会用一个正方形的卷积核,按指定步长,在输入特征图上滑动,遍历输入特征图中的每个像素点。每一个步长, 卷积核会与输入特征图出现重合区域,重合区域对应元素相乘、求和再加上偏置项得到输出特征的一个像素点,如下图所示。 对于彩色图像(多通道)来说,卷积核通道数与输入特征一致,套接后在对应位置上 进行乘加和操作,... @toc 1、卷积的概念 卷积的概念:卷积可以认为是一种有效提取图像特征的方法。一般会用一个正方形的卷积核,按指定步长,在输入特征图上滑动,遍历输入特征图中的每个像素点。每一个步长, 卷积核会与输入特征图出现重合区域,重合区域对应元素相乘、求和再加上偏置项得到输出特征的一个像素点,如下图所示。 对于彩色图像(多通道)来说,卷积核通道数与输入特征一致,套接后在对应位置上 进行乘加和操作,...
- @toc借鉴点:共享卷积核,减少网络参数。 1、LeNet5网络结构搭建 LeNet 即 LeNet5,由 Yann LeCun 在 1998 年提出,做为最早的卷积神经网络之一,是许多神经网络架构的起点,其网络结构如图所示。 根据以上信息,就可以根据我前面文章所总结出来的方法,在 Tensorflow 框架下利用 tf.Keras 来构建 LeNet5 模型,如图所示。 图中紫色部分... @toc借鉴点:共享卷积核,减少网络参数。 1、LeNet5网络结构搭建 LeNet 即 LeNet5,由 Yann LeCun 在 1998 年提出,做为最早的卷积神经网络之一,是许多神经网络架构的起点,其网络结构如图所示。 根据以上信息,就可以根据我前面文章所总结出来的方法,在 Tensorflow 框架下利用 tf.Keras 来构建 LeNet5 模型,如图所示。 图中紫色部分...
- @toc该网络值得借鉴的地方:激活函数使用 Relu,提升训练速度;Dropout 防止过拟合。 1、AlexNet网络结构 AlexNet 网络诞生于 2012 年,是第一个在图像识别比赛中获得冠军的深度学习模型,其 ImageNet Top5 错误率为 16.4 %,可以说 AlexNet 的出现使得已经沉寂多年的深度学习领域开启了黄金时代。 AlexNet 的总体结构和 LeNet... @toc该网络值得借鉴的地方:激活函数使用 Relu,提升训练速度;Dropout 防止过拟合。 1、AlexNet网络结构 AlexNet 网络诞生于 2012 年,是第一个在图像识别比赛中获得冠军的深度学习模型,其 ImageNet Top5 错误率为 16.4 %,可以说 AlexNet 的出现使得已经沉寂多年的深度学习领域开启了黄金时代。 AlexNet 的总体结构和 LeNet...
- @toc借鉴点:小卷积核减少参数的同时,提高识别准确率;网络结构规整,适合并行加速。 1、VGGNet网络模型 在 AlexNet 之后,另一个性能提升较大的网络是诞生于 2014 年的 VGGNet,其 ImageNet Top5 错误率减小到了 7.3 %。 VGGNet 网络的最大改进是在网络的深度上,由 AlexNet 的 8 层增加到了 16 层和 19 层, 更深的网络意味... @toc借鉴点:小卷积核减少参数的同时,提高识别准确率;网络结构规整,适合并行加速。 1、VGGNet网络模型 在 AlexNet 之后,另一个性能提升较大的网络是诞生于 2014 年的 VGGNet,其 ImageNet Top5 错误率减小到了 7.3 %。 VGGNet 网络的最大改进是在网络的深度上,由 AlexNet 的 8 层增加到了 16 层和 19 层, 更深的网络意味...
- @toc借鉴点:层间残差跳连,引入前方信息,减少梯度消失,使神经网络层数变身成为可能。 1、ResNet残差网络 ResNet 即深度残差网络,由何恺明及其团队提出,是深度学习领域又一具有开创性的工作,通过对残差结构的运用,ResNet 使得训练数百层的网络成为了可能,从而具有非常强大的表征能力,其网络结构如图所示。 ResNet 的核心是残差结构,如下图所示。在残差结构中,ResNet... @toc借鉴点:层间残差跳连,引入前方信息,减少梯度消失,使神经网络层数变身成为可能。 1、ResNet残差网络 ResNet 即深度残差网络,由何恺明及其团队提出,是深度学习领域又一具有开创性的工作,通过对残差结构的运用,ResNet 使得训练数百层的网络成为了可能,从而具有非常强大的表征能力,其网络结构如图所示。 ResNet 的核心是残差结构,如下图所示。在残差结构中,ResNet...
- @toc借鉴点:一层内使用不同尺寸的卷积核,提升感知力(通过 padding 实现输出特征面积一致); 使用 1 * 1 卷积核,改变输出特征 channel 数(减少网络参数)。 1、InceptionNet网络模型 InceptionNet 即 GoogLeNet,诞生于 2015 年,旨在通过增加网络的宽度来提升网络的能力,与 VGGNet 通过卷积层堆叠的方式(纵向)相比,是一个不... @toc借鉴点:一层内使用不同尺寸的卷积核,提升感知力(通过 padding 实现输出特征面积一致); 使用 1 * 1 卷积核,改变输出特征 channel 数(减少网络参数)。 1、InceptionNet网络模型 InceptionNet 即 GoogLeNet,诞生于 2015 年,旨在通过增加网络的宽度来提升网络的能力,与 VGGNet 通过卷积层堆叠的方式(纵向)相比,是一个不...
- @toc原理请查看前面几篇文章。 1、数据源 SH600519.csv 是用 tushare 模块下载的 SH600519 贵州茅台的日 k 线数据,本次例子中只用它的 C 列数据(如图 所示): 用连续 60 天的开盘价,预测第 61 天的开盘价。 2、代码实现 按照六步法: import 相关模块->读取贵州茅台日 k 线数据到变量 maotai,把变量 maotai 中前 212... @toc原理请查看前面几篇文章。 1、数据源 SH600519.csv 是用 tushare 模块下载的 SH600519 贵州茅台的日 k 线数据,本次例子中只用它的 C 列数据(如图 所示): 用连续 60 天的开盘价,预测第 61 天的开盘价。 2、代码实现 按照六步法: import 相关模块->读取贵州茅台日 k 线数据到变量 maotai,把变量 maotai 中前 212...
- @toc 1、传统RNN的缺点 RNN 面临的较大问题是无法解决长跨度依赖问题,即后面节点相对于跨度很大的前面时间节点的信息感知能力太弱。如下图中的两句话:左上角的句子中 sky 可以由较短跨度的词预测出来,而右下角句子中的 French 与较长跨度之前的 France 有关系,即长跨度依赖,比较难预测。 图片来源:https://www.jianshu.com/p/9dc9f41f0b... @toc 1、传统RNN的缺点 RNN 面临的较大问题是无法解决长跨度依赖问题,即后面节点相对于跨度很大的前面时间节点的信息感知能力太弱。如下图中的两句话:左上角的句子中 sky 可以由较短跨度的词预测出来,而右下角句子中的 French 与较长跨度之前的 France 有关系,即长跨度依赖,比较难预测。 图片来源:https://www.jianshu.com/p/9dc9f41f0b...
- @toc 1、GRU(门控循环单元)GRU 由 Cho 等人于 2014 年提出,优化 LSTM 结构。 1.1 GRU原理 门控循环单元(Gated Recurrent Unit,GRU)是 LSTM 的一种变体,将 LSTM 中遗忘门与输入门合二为一为更新门,模型比 LSTM 模型更简单。 如上图所示,GRU 使记忆体hth_tht融合了长期记忆和短期记忆。hth_tht包含了过... @toc 1、GRU(门控循环单元)GRU 由 Cho 等人于 2014 年提出,优化 LSTM 结构。 1.1 GRU原理 门控循环单元(Gated Recurrent Unit,GRU)是 LSTM 的一种变体,将 LSTM 中遗忘门与输入门合二为一为更新门,模型比 LSTM 模型更简单。 如上图所示,GRU 使记忆体hth_tht融合了长期记忆和短期记忆。hth_tht包含了过...
- 《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座,并分享给大家,希望您喜欢。前文介绍了谷歌的Word2vec和Doc2vec,它们开启了NLP的飞跃发展。这篇文章将详细讲解DeepWalk,通过随机游走的方式对网络化数据做一个表示学习,它是图神经网络的开山之作,借鉴了Word2vec的思想,值得大家学习。 《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座,并分享给大家,希望您喜欢。前文介绍了谷歌的Word2vec和Doc2vec,它们开启了NLP的飞跃发展。这篇文章将详细讲解DeepWalk,通过随机游走的方式对网络化数据做一个表示学习,它是图神经网络的开山之作,借鉴了Word2vec的思想,值得大家学习。
- 本项目讲解了基于ERNIE信息抽取技术,对属性和关系的抽取涉及多对多抽取,主要是使用可ERNIEKIT组件,整体效果非常不错,当然追求小样本学习的可以参考之前UIE项目或者去官网看看paddlenlp最新的更新,对训练和部署进行了提速。 本项目讲解了基于ERNIE信息抽取技术,对属性和关系的抽取涉及多对多抽取,主要是使用可ERNIEKIT组件,整体效果非常不错,当然追求小样本学习的可以参考之前UIE项目或者去官网看看paddlenlp最新的更新,对训练和部署进行了提速。
上滑加载中
推荐直播
-
DeepSeek行业运用方案
2025/02/25 周二 16:30-17:30
阿肯-华为云生态技术讲师
本期课程将带您揭秘DeepSeek在多行业的创新方案,手把手演示如何通过ModelArts在华为云上构建方案。
回顾中 -
华为云 x DeepSeek:AI驱动云上应用创新
2025/02/26 周三 16:00-18:00
华为云 AI专家大咖团
在 AI 技术飞速发展之际,DeepSeek 备受关注。它凭借哪些技术与理念脱颖而出?华为云与 DeepSeek 合作,将如何重塑产品与应用模式,助力企业数字化转型?在华为开发者空间,怎样高效部署 DeepSeek,搭建专属服务器?基于华为云平台,又该如何挖掘 DeepSeek 潜力,实现智能化升级?本期直播围绕DeepSeek在云上的应用案例,与DTSE布道师们一起探讨如何利用AI 驱动云上应用创新。
去报名
热门标签