- 多道信号分析软件系统,信息挖掘利器 ! 多道信号分析软件系统,信息挖掘利器 !
- 使用Python实现线性回归 使用Python实现线性回归
- 图片来源网络! 序大家在刷题时,常见的 OJ 平台(例如:洛谷)都会遇到测试点提示的信息,为了清楚的知道自己错在哪里,非常有必要了解下 OJ 系统的提示信息 术语解释缩略语英文全称中文全称OJOnline Judge在线判题系统ACAccepted通过WAWrong Answer答案错误TLETime Limit Exceed超时OLEOutput Limit Exceed超过输出限制MLE... 图片来源网络! 序大家在刷题时,常见的 OJ 平台(例如:洛谷)都会遇到测试点提示的信息,为了清楚的知道自己错在哪里,非常有必要了解下 OJ 系统的提示信息 术语解释缩略语英文全称中文全称OJOnline Judge在线判题系统ACAccepted通过WAWrong Answer答案错误TLETime Limit Exceed超时OLEOutput Limit Exceed超过输出限制MLE...
- 多元线性回归多元线性回归适用于多变量,多特征量的应用场景。 一些数学符号定义n表示变量的数目;m表示样本数目;x(i)表示第i个训练样本:如x(2) = [1416, 3, 2, 40];xj(i)表示第i个训练样本的第j个变量,如上述的x3(2)=2。 多元线性回归问题通过如下图的推导,将公式转化成向量的转置乘以向量(向量内积)。 多元线性回归的代价函数与梯度下降算法注意:在不断的迭代中... 多元线性回归多元线性回归适用于多变量,多特征量的应用场景。 一些数学符号定义n表示变量的数目;m表示样本数目;x(i)表示第i个训练样本:如x(2) = [1416, 3, 2, 40];xj(i)表示第i个训练样本的第j个变量,如上述的x3(2)=2。 多元线性回归问题通过如下图的推导,将公式转化成向量的转置乘以向量(向量内积)。 多元线性回归的代价函数与梯度下降算法注意:在不断的迭代中...
- 正则项不影响线性回归损失函数的凸性 2021-09-10Question: 加上正则项以后函数还是凸的吗? 梯度下降还适用吗?还是适用的, 证明如下 首先, 如何证明一个函数为凸函数?如果fff是二阶可微的,那么如果fff的定义域是凸集,并且∀x∈dom(f),∇2f(x)⩾0\forall x\in dom(f), \nabla^2 f(x)\geqslant0∀x∈dom(f),∇2f... 正则项不影响线性回归损失函数的凸性 2021-09-10Question: 加上正则项以后函数还是凸的吗? 梯度下降还适用吗?还是适用的, 证明如下 首先, 如何证明一个函数为凸函数?如果fff是二阶可微的,那么如果fff的定义域是凸集,并且∀x∈dom(f),∇2f(x)⩾0\forall x\in dom(f), \nabla^2 f(x)\geqslant0∀x∈dom(f),∇2f...
- 写在前面自考运筹学,自学宝典,梦想橡皮擦,为你擦掉自考的梦想,嘿嘿自己准备自考,你要做的第一件事情,叫做分析试卷,所谓知己知彼,百战不殆你要知道考点,才能应付考点,是吧我随机抽样了2006年、2012年、2018年的真题试卷 试卷组成年份题型与分值2006年选择(15道 15分)填空(10道10分)名词解释(5道15分)计算题(3道15分)计算题(3道15分)计算题(2道14分)计算题(2... 写在前面自考运筹学,自学宝典,梦想橡皮擦,为你擦掉自考的梦想,嘿嘿自己准备自考,你要做的第一件事情,叫做分析试卷,所谓知己知彼,百战不殆你要知道考点,才能应付考点,是吧我随机抽样了2006年、2012年、2018年的真题试卷 试卷组成年份题型与分值2006年选择(15道 15分)填空(10道10分)名词解释(5道15分)计算题(3道15分)计算题(3道15分)计算题(2道14分)计算题(2...
- 算法拼图从最简单的线性回归开始。 算法拼图从最简单的线性回归开始。
- 什么是keras 中文 https://keras.io/zh/ 英文 https://keras.io/ 与其他任何深度学习框架相比,Keras 在行业和研究领域的应用率更高(除 TensorFlow 之外,且 Keras API 是 TensorFlow 的官方前端,通过 tf.keras 模块使用)。 简单的线性回归 Keras 的核心数据结构是 mod... 什么是keras 中文 https://keras.io/zh/ 英文 https://keras.io/ 与其他任何深度学习框架相比,Keras 在行业和研究领域的应用率更高(除 TensorFlow 之外,且 Keras API 是 TensorFlow 的官方前端,通过 tf.keras 模块使用)。 简单的线性回归 Keras 的核心数据结构是 mod...
- 一、什么是机器学习?机器学习=寻找一种函数,如何寻找这个函数?①定一个函数集合 ②判断函数的好坏 ③选择最好的函数机器学习三板斧①设计模型model②判断模型的好坏③选择最好的函数,优化模型 3.1修改模型,增加数据维度 3.2增加正则因子,使函数更加平滑,让参数w取值更小。(x变化较小时,整个函数结果不会变化太大,结果更准)学习路线监督学习:有数据标注情况下学习(回归、分类)半... 一、什么是机器学习?机器学习=寻找一种函数,如何寻找这个函数?①定一个函数集合 ②判断函数的好坏 ③选择最好的函数机器学习三板斧①设计模型model②判断模型的好坏③选择最好的函数,优化模型 3.1修改模型,增加数据维度 3.2增加正则因子,使函数更加平滑,让参数w取值更小。(x变化较小时,整个函数结果不会变化太大,结果更准)学习路线监督学习:有数据标注情况下学习(回归、分类)半...
- 本节书摘来自华章计算机《Python数据挖掘与机器学习实战》一书中的第3章,第3.5.1节,作者是方巍 。 本节书摘来自华章计算机《Python数据挖掘与机器学习实战》一书中的第3章,第3.5.1节,作者是方巍 。
- 本节书摘来自华章计算机《Python数据挖掘与机器学习实战》一书中的第3章,第3.4节,作者是方巍 。 本节书摘来自华章计算机《Python数据挖掘与机器学习实战》一书中的第3章,第3.4节,作者是方巍 。
- 线性回归是一种简单而强大的统计学方法,用于预测一个因变量与一个或多个自变量之间的关系。在本文中,我们将使用Python来实现一个基本的线性回归模型,并介绍其原理和实现过程。加粗样式 什么是线性回归?线性回归是一种用于建立因变量与自变量之间线性关系的统计模型。其基本形式为: 使用Python实现线性回归导入必要的库首先,我们需要导入必要的Python库:import numpy as npim... 线性回归是一种简单而强大的统计学方法,用于预测一个因变量与一个或多个自变量之间的关系。在本文中,我们将使用Python来实现一个基本的线性回归模型,并介绍其原理和实现过程。加粗样式 什么是线性回归?线性回归是一种用于建立因变量与自变量之间线性关系的统计模型。其基本形式为: 使用Python实现线性回归导入必要的库首先,我们需要导入必要的Python库:import numpy as npim...
- 线性回归是机器学习中最基础、最常用的算法之一,它用于建立输入特征与连续目标变量之间的关系。本文将深入探讨线性回归的原理、实现方式以及如何使用Python进行线性回归分析。 什么是线性回归?线性回归是一种统计学方法,用于建立自变量(输入特征)与因变量(输出)之间的线性关系。它假设自变量和因变量之间存在一个线性关系,即因变量可以由自变量的线性组合表示。线性回归模型的一般形式为: 线性回归的原理线... 线性回归是机器学习中最基础、最常用的算法之一,它用于建立输入特征与连续目标变量之间的关系。本文将深入探讨线性回归的原理、实现方式以及如何使用Python进行线性回归分析。 什么是线性回归?线性回归是一种统计学方法,用于建立自变量(输入特征)与因变量(输出)之间的线性关系。它假设自变量和因变量之间存在一个线性关系,即因变量可以由自变量的线性组合表示。线性回归模型的一般形式为: 线性回归的原理线...
- 🍀引言线性回归是机器学习领域中最基础的模型之一,它在许多实际问题中都具有广泛的应用。然而,在使用线性回归模型时,仅仅构建模型是不够的,还需要对模型进行评估和优化,以确保其在实际应用中表现出色。本篇博客将深入探讨线性回归模型的评估与优化方法,同时使用Python进行实际演示。🍀模型评估方法模型评估是了解模型性能的关键步骤,它帮助我们了解模型在新数据上的表现。在线性回归中,常用的评估指标包括... 🍀引言线性回归是机器学习领域中最基础的模型之一,它在许多实际问题中都具有广泛的应用。然而,在使用线性回归模型时,仅仅构建模型是不够的,还需要对模型进行评估和优化,以确保其在实际应用中表现出色。本篇博客将深入探讨线性回归模型的评估与优化方法,同时使用Python进行实际演示。🍀模型评估方法模型评估是了解模型性能的关键步骤,它帮助我们了解模型在新数据上的表现。在线性回归中,常用的评估指标包括...
- 🍀引言在现代计算机应用中,处理多任务和并发操作是至关重要的。进程、线程和协程是实现并发编程的三种重要机制。本文将带您深入了解进程、线程和协程的概念、区别以及在不同场景中的应用,帮助您更好地理解并发编程的核心概念。🍀CPU与三者的联系CPU(中央处理器)是计算机中的主要计算和执行任务的组件之一。它由多个处理单元组成,可以同时执行多个指令。进程是操作系统中运行的一个程序实例,它具有独立的地址... 🍀引言在现代计算机应用中,处理多任务和并发操作是至关重要的。进程、线程和协程是实现并发编程的三种重要机制。本文将带您深入了解进程、线程和协程的概念、区别以及在不同场景中的应用,帮助您更好地理解并发编程的核心概念。🍀CPU与三者的联系CPU(中央处理器)是计算机中的主要计算和执行任务的组件之一。它由多个处理单元组成,可以同时执行多个指令。进程是操作系统中运行的一个程序实例,它具有独立的地址...
上滑加载中
推荐直播
-
计算机核心课程贯通式实践教学体系介绍
2025/01/05 周日 09:00-12:00
华为开发者布道师、湖南大学二级教授、博士生导师赵欢
1月5日上午,华为开发者布道师直播间将迎来重磅嘉宾!赵欢老师,计算机教育创新先锋,其 “小而全系统” 教学方案重塑计算机类专业课程与实践,融合鲲鹏生态技术知识,斩获国家级教学成果奖。杨科华老师专注小型全系统实践,在香橙派鲲鹏 Pro 开发板构建精妙 mini 系统,带您直击计算机底层奥秘。还有香橙派系统开发部李博经理,精通开发板硬件与应用,将全方位揭秘开发板使用及 FPGA 开发实战案例。三位大咖齐聚,为高校师生开启计算机系统能力提升的知识宝库,精彩即将上线,速速预约!
即将直播 -
GaussDB数据库介绍
2025/01/07 周二 16:00-18:00
Steven 华为云学堂技术讲师
本期直播将介绍GaussDB数据库的发展历程、优势、架构、关键特性和部署模式等,旨在帮助开发者了解GaussDB数据库,并通过手把手实验教大家如何在华为云部署GaussDB数据库和使用gsql连接GaussDB数据库。
去报名 -
DTT年度收官盛典:华为开发者空间大咖汇,共探云端开发创新
2025/01/08 周三 16:30-18:00
Yawei 华为云开发工具和效率首席专家 Edwin 华为开发者空间产品总监
数字化转型进程持续加速,驱动着技术革新发展,华为开发者空间如何巧妙整合鸿蒙、昇腾、鲲鹏等核心资源,打破平台间的壁垒,实现跨平台协同?在科技迅猛发展的今天,开发者们如何迅速把握机遇,实现高效、创新的技术突破?DTT 年度收官盛典,将与大家共同探索华为开发者空间的创新奥秘。
去报名
热门标签