- 回归算法:1. 原理:回归算法是一种有监督算法,主要用于预测输入变量和输出变量之间的关系,即回归模型是表示输入变量到输出变量之间的映射。回归的问题等价于函数拟合,使用一条曲线希望它能够很好的拟合已知函数且很好的预测未知函数。2. 过程:基于给定的训练数据,构建出一个模型,然后根据新的输入数据预测相应的输出。线性回归:1. 定义:线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相... 回归算法:1. 原理:回归算法是一种有监督算法,主要用于预测输入变量和输出变量之间的关系,即回归模型是表示输入变量到输出变量之间的映射。回归的问题等价于函数拟合,使用一条曲线希望它能够很好的拟合已知函数且很好的预测未知函数。2. 过程:基于给定的训练数据,构建出一个模型,然后根据新的输入数据预测相应的输出。线性回归:1. 定义:线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相...
- 多道信号分析软件系统,信息挖掘利器 ! 多道信号分析软件系统,信息挖掘利器 !
- 使用Python实现线性回归 使用Python实现线性回归
- 图片来源网络! 序大家在刷题时,常见的 OJ 平台(例如:洛谷)都会遇到测试点提示的信息,为了清楚的知道自己错在哪里,非常有必要了解下 OJ 系统的提示信息 术语解释缩略语英文全称中文全称OJOnline Judge在线判题系统ACAccepted通过WAWrong Answer答案错误TLETime Limit Exceed超时OLEOutput Limit Exceed超过输出限制MLE... 图片来源网络! 序大家在刷题时,常见的 OJ 平台(例如:洛谷)都会遇到测试点提示的信息,为了清楚的知道自己错在哪里,非常有必要了解下 OJ 系统的提示信息 术语解释缩略语英文全称中文全称OJOnline Judge在线判题系统ACAccepted通过WAWrong Answer答案错误TLETime Limit Exceed超时OLEOutput Limit Exceed超过输出限制MLE...
- 多元线性回归多元线性回归适用于多变量,多特征量的应用场景。 一些数学符号定义n表示变量的数目;m表示样本数目;x(i)表示第i个训练样本:如x(2) = [1416, 3, 2, 40];xj(i)表示第i个训练样本的第j个变量,如上述的x3(2)=2。 多元线性回归问题通过如下图的推导,将公式转化成向量的转置乘以向量(向量内积)。 多元线性回归的代价函数与梯度下降算法注意:在不断的迭代中... 多元线性回归多元线性回归适用于多变量,多特征量的应用场景。 一些数学符号定义n表示变量的数目;m表示样本数目;x(i)表示第i个训练样本:如x(2) = [1416, 3, 2, 40];xj(i)表示第i个训练样本的第j个变量,如上述的x3(2)=2。 多元线性回归问题通过如下图的推导,将公式转化成向量的转置乘以向量(向量内积)。 多元线性回归的代价函数与梯度下降算法注意:在不断的迭代中...
- 正则项不影响线性回归损失函数的凸性 2021-09-10Question: 加上正则项以后函数还是凸的吗? 梯度下降还适用吗?还是适用的, 证明如下 首先, 如何证明一个函数为凸函数?如果fff是二阶可微的,那么如果fff的定义域是凸集,并且∀x∈dom(f),∇2f(x)⩾0\forall x\in dom(f), \nabla^2 f(x)\geqslant0∀x∈dom(f),∇2f... 正则项不影响线性回归损失函数的凸性 2021-09-10Question: 加上正则项以后函数还是凸的吗? 梯度下降还适用吗?还是适用的, 证明如下 首先, 如何证明一个函数为凸函数?如果fff是二阶可微的,那么如果fff的定义域是凸集,并且∀x∈dom(f),∇2f(x)⩾0\forall x\in dom(f), \nabla^2 f(x)\geqslant0∀x∈dom(f),∇2f...
- 写在前面自考运筹学,自学宝典,梦想橡皮擦,为你擦掉自考的梦想,嘿嘿自己准备自考,你要做的第一件事情,叫做分析试卷,所谓知己知彼,百战不殆你要知道考点,才能应付考点,是吧我随机抽样了2006年、2012年、2018年的真题试卷 试卷组成年份题型与分值2006年选择(15道 15分)填空(10道10分)名词解释(5道15分)计算题(3道15分)计算题(3道15分)计算题(2道14分)计算题(2... 写在前面自考运筹学,自学宝典,梦想橡皮擦,为你擦掉自考的梦想,嘿嘿自己准备自考,你要做的第一件事情,叫做分析试卷,所谓知己知彼,百战不殆你要知道考点,才能应付考点,是吧我随机抽样了2006年、2012年、2018年的真题试卷 试卷组成年份题型与分值2006年选择(15道 15分)填空(10道10分)名词解释(5道15分)计算题(3道15分)计算题(3道15分)计算题(2道14分)计算题(2...
- 算法拼图从最简单的线性回归开始。 算法拼图从最简单的线性回归开始。
- 什么是keras 中文 https://keras.io/zh/ 英文 https://keras.io/ 与其他任何深度学习框架相比,Keras 在行业和研究领域的应用率更高(除 TensorFlow 之外,且 Keras API 是 TensorFlow 的官方前端,通过 tf.keras 模块使用)。 简单的线性回归 Keras 的核心数据结构是 mod... 什么是keras 中文 https://keras.io/zh/ 英文 https://keras.io/ 与其他任何深度学习框架相比,Keras 在行业和研究领域的应用率更高(除 TensorFlow 之外,且 Keras API 是 TensorFlow 的官方前端,通过 tf.keras 模块使用)。 简单的线性回归 Keras 的核心数据结构是 mod...
- 一、什么是机器学习?机器学习=寻找一种函数,如何寻找这个函数?①定一个函数集合 ②判断函数的好坏 ③选择最好的函数机器学习三板斧①设计模型model②判断模型的好坏③选择最好的函数,优化模型 3.1修改模型,增加数据维度 3.2增加正则因子,使函数更加平滑,让参数w取值更小。(x变化较小时,整个函数结果不会变化太大,结果更准)学习路线监督学习:有数据标注情况下学习(回归、分类)半... 一、什么是机器学习?机器学习=寻找一种函数,如何寻找这个函数?①定一个函数集合 ②判断函数的好坏 ③选择最好的函数机器学习三板斧①设计模型model②判断模型的好坏③选择最好的函数,优化模型 3.1修改模型,增加数据维度 3.2增加正则因子,使函数更加平滑,让参数w取值更小。(x变化较小时,整个函数结果不会变化太大,结果更准)学习路线监督学习:有数据标注情况下学习(回归、分类)半...
- 本节书摘来自华章计算机《Python数据挖掘与机器学习实战》一书中的第3章,第3.5.1节,作者是方巍 。 本节书摘来自华章计算机《Python数据挖掘与机器学习实战》一书中的第3章,第3.5.1节,作者是方巍 。
- 本节书摘来自华章计算机《Python数据挖掘与机器学习实战》一书中的第3章,第3.4节,作者是方巍 。 本节书摘来自华章计算机《Python数据挖掘与机器学习实战》一书中的第3章,第3.4节,作者是方巍 。
- 线性回归是一种简单而强大的统计学方法,用于预测一个因变量与一个或多个自变量之间的关系。在本文中,我们将使用Python来实现一个基本的线性回归模型,并介绍其原理和实现过程。加粗样式 什么是线性回归?线性回归是一种用于建立因变量与自变量之间线性关系的统计模型。其基本形式为: 使用Python实现线性回归导入必要的库首先,我们需要导入必要的Python库:import numpy as npim... 线性回归是一种简单而强大的统计学方法,用于预测一个因变量与一个或多个自变量之间的关系。在本文中,我们将使用Python来实现一个基本的线性回归模型,并介绍其原理和实现过程。加粗样式 什么是线性回归?线性回归是一种用于建立因变量与自变量之间线性关系的统计模型。其基本形式为: 使用Python实现线性回归导入必要的库首先,我们需要导入必要的Python库:import numpy as npim...
- 线性回归是机器学习中最基础、最常用的算法之一,它用于建立输入特征与连续目标变量之间的关系。本文将深入探讨线性回归的原理、实现方式以及如何使用Python进行线性回归分析。 什么是线性回归?线性回归是一种统计学方法,用于建立自变量(输入特征)与因变量(输出)之间的线性关系。它假设自变量和因变量之间存在一个线性关系,即因变量可以由自变量的线性组合表示。线性回归模型的一般形式为: 线性回归的原理线... 线性回归是机器学习中最基础、最常用的算法之一,它用于建立输入特征与连续目标变量之间的关系。本文将深入探讨线性回归的原理、实现方式以及如何使用Python进行线性回归分析。 什么是线性回归?线性回归是一种统计学方法,用于建立自变量(输入特征)与因变量(输出)之间的线性关系。它假设自变量和因变量之间存在一个线性关系,即因变量可以由自变量的线性组合表示。线性回归模型的一般形式为: 线性回归的原理线...
- 🍀引言线性回归是机器学习领域中最基础的模型之一,它在许多实际问题中都具有广泛的应用。然而,在使用线性回归模型时,仅仅构建模型是不够的,还需要对模型进行评估和优化,以确保其在实际应用中表现出色。本篇博客将深入探讨线性回归模型的评估与优化方法,同时使用Python进行实际演示。🍀模型评估方法模型评估是了解模型性能的关键步骤,它帮助我们了解模型在新数据上的表现。在线性回归中,常用的评估指标包括... 🍀引言线性回归是机器学习领域中最基础的模型之一,它在许多实际问题中都具有广泛的应用。然而,在使用线性回归模型时,仅仅构建模型是不够的,还需要对模型进行评估和优化,以确保其在实际应用中表现出色。本篇博客将深入探讨线性回归模型的评估与优化方法,同时使用Python进行实际演示。🍀模型评估方法模型评估是了解模型性能的关键步骤,它帮助我们了解模型在新数据上的表现。在线性回归中,常用的评估指标包括...
上滑加载中
推荐直播
-
华为云 x DeepSeek:AI驱动云上应用创新
2025/02/26 周三 16:00-18:00
华为云 AI专家大咖团
在 AI 技术飞速发展之际,DeepSeek 备受关注。它凭借哪些技术与理念脱颖而出?华为云与 DeepSeek 合作,将如何重塑产品与应用模式,助力企业数字化转型?在华为开发者空间,怎样高效部署 DeepSeek,搭建专属服务器?基于华为云平台,又该如何挖掘 DeepSeek 潜力,实现智能化升级?本期直播围绕DeepSeek在云上的应用案例,与DTSE布道师们一起探讨如何利用AI 驱动云上应用创新。
回顾中 -
智能观测进化论系列沙龙(第一期)
2025/02/28 周五 14:00-16:30
华为及外部讲师团
本期直播就智能化可观测技术的融合与创新、落地与实践、瓶颈与未来等业界关心的话题进行深入探讨。
回顾中 -
聚焦Deepseek,洞察开发者生态发展
2025/02/28 周五 19:00-20:30
蒋涛 csdn创始人
深入剖析Deepseek爆发后,中国开发者生态潜藏的巨大发展潜能与未来走向,精准提炼出可供大家把握的时代机遇,干货满满,不容错过。
回顾中
热门标签