• [技术干货] KubeEdge 1.22.0版本发布!边缘资源管理能力提升!
    北京时间2025年11月4日,KubeEdge 发布 1.22.0 版本。新版本对 Beehive 框架以及 Device Model 做了优化升级,同时对边缘资源管理能力做了提升。KubeEdge v1.22.0 新增特性:新增 hold/release 机制控制边缘资源更新 Beehive框架升级,支持配置子模块重启策略  基于物模型与产品概念的设备模型能力升级边缘轻量化 Kubelet 新增 Pod Resources Server 和 CSI Plugin 特性开关C语言版本的 Mapper-Framework 支持升级 K8s 依赖到1.31  新特性概览  ▍新增 hold/release 机制控制边缘资源更新在自动驾驶、无人机和机器人等应用场景中,我们希望在边缘能够控制对边缘资源的更新,以确保在未得到边缘设备管理员的许可下,这些资源无法被更新。在1.22.0版本中,我们引入了 hold/release 机制 来管理边缘资源的更新。在云端,用户可以通过对 Deployment、StatefulSet 和 DaemonSet 等资源添加edge.kubeedge.io/hold-upgrade: "true"的annotation,表示对应的 Pod 在边缘更新需要被 hold。在边缘,被标记了edge.kubeedge.io/hold-upgrade: "true"的 Pod 会被暂缓被处理。边缘管理员可以通过执行以下命令来释放对该 Pod 的锁,完成资源更新。keadm ctl unhold-upgrade pod <pod-name>也可以执行以下命令解锁边缘节点上所有被 hold 的边缘资源keadm ctl unhold-upgrade node💭 注意:使用keadm ctl命令需要启动 DynamicController 和 MetaServer 开关。更多信息可参考:cid:link_1cid:link_2▍Beehive框架升级,支持配置子模块重启策略在1.17版本中,我们实现了 EdgeCore 模块的自重启,可以通过全局配置来设置边缘模块的重启。在1.22版本中,我们对 Beehive 框架进行了升级优化,支持边缘子模块级别的重启策略配置。同时我们统一了 Beehive 各子模块启动的错误处理方式,对子模块能力标准化。更多信息可参考:https://github.com/kubeedge/kubeedge/pull/6444cid:link_3▍基于物模型与产品概念的设备模型能力升级 目前的 Device Model 基于物模型概念设计,而在传统 IoT 中,设备通常采用物模型、产品和设备实例三层结构进行设计,可能导致用户在实际使用中产生困惑。在 1.22.0 版本中,我们结合物模型与实际产品的概念,对设备模型的设计进行了升级。从现有的设备实例中提取了protocolConfigData ,  visitors字段到设备模型中,设备实例可以共享这些模型配置。同时,为了降低模型分离的成本,设备实例可以重写覆盖以上配置。更多信息可参考:cid:link_4cid:link_5▍边缘轻量化 Kubelet 新增 Pod Resources Server 和 CSI Plugin 特性开关 在之前的版本中,我们在 EdgeCore 集成的轻量化 Kubelet 中移除了 Pod Resources Server 能力,但在一些使用场景中,用户希望恢复该能力以实现对Pod的监控等。同时,由于 Kubelet 默认启动 CSI Plugin,离线环境下启动 EdgeCore 会由于 CSINode 创建失败而导致失败。在 1.22.0 版本中,我们在轻量化 Kubelet 中新增了 Pod Resources Server 和 CSI Plugin 特性开关,如果您需要启用 Pod Resources Server 或关闭 CSI Plugin,您可以在 EdgeCore 配置中添加如下特性开关:apiVersion: edgecore.config.kubeedge.io/v1alpha2kind: EdgeCoremodules:  edged:    tailoredKubeletConfig:      featureGates:        KubeletPodResources: true        DisableCSIVolumePlugin: true...更多信息可参考:cid:link_6cid:link_7cid:link_8▍C语言版本 Mapper-Framework 支持 在1.20.0版本中,我们在原有的 go 语言版本 Mapper 工程基础上,新增了 Java 版本的 Mapper-Framework。由于边缘 IoT 设备通信协议的多样性,很多边缘设备驱动协议都是基于 C语言实现的,因此在新版本中,KubeEdge 提供了 C语言版本的 Mapper-Framework,用户可以访问 KubeEdge 主仓库的feature-multilingual-mapper-c分支,利用 Mapper-Framework 生成 C语言版本的自定义 Mapper 工程。更多信息可参考:cid:link_9cid:link_10▍升级 K8s 依赖到1.31新版本将依赖的 Kubernetes 版本升级到v1.31.12,您可以在云和边缘使用新版本的特性。更多信息可参考:cid:link_11▍致谢感谢 KubeEdge 社区技术指导委员会 (TSC)、各 SIG 成员对 v1.22 版本开发的支持与贡献,未来 KubeEdge 将持续在新场景探索与支持、稳定性、安全性、可扩展性等方面持续发展与演进!▍相关链接Release Notes:cid:link_0 添加小助手k8s2222回复KubeEdge进群
  • [热门活动] KCD 杭州站 x OpenInfra Days China 首次联手!华为云云原生团队与您共探Karmada多模板工作负载多集群管理方案
      Karmada 是开放的多云多集群容器编排引擎,旨在帮助用户在多云环境下部署和运维业务应用。凭借兼容 Kubernetes 原生 API 的能力,Karmada 可以平滑迁移单集群工作负载,并且仍可保持与 Kubernetes 周边生态工具链协同。Karmada 贡献者广泛分布于 20+ 国家和地区,为企业提供从单集群到多云架构的平滑演进方案。在KCD 杭州站 x OpenInfra Days China 2025,Karmada 社区将在 AI 专场,与您探讨云原生多集群解决方案。演讲主题:多模板遇上多集群:基于 Karmada 的AI大数据应用的资源治理与智能调度演讲嘉宾:Zhuang Zhang (@zhzhuang-zju),华为云研发工程师,Karmada社区技术专家议题时间:11月15日(周六) 16:45 - 17:15 ·  浙大森林会议中心议题简介:当前,AI 与大数据应用已成为企业技术创新的核心驱动力,这类应用普遍由多个协同组件构成(如作业协调、任务执行等),呈现出典型的“多模板应用”特征——即一个应用或任务会定义多个不同类型的 Pod 模板,每个模板具有不同的资源需求和副本规模,共同组成一个逻辑整体。随着业务规模扩大和容灾需求提升,多集群部署已成为主流趋势。然而,这一演进也带来了严峻的挑战:如何精准感知一个由多个模板组成的应用整体对计算、内存等资源的复合需求?如何在众多集群中智能选择最合适的部署集群来提高资源利用率?不同业务团队间的资源配额又该如何有效控制与协调,确保公平性与隔离性?这些难题制约着 AI 应用在多集群环境下的高效、稳定运行。为更好地支撑 AI 场景下的多集群管理,Karmada 社区在吸纳了大量用户实践反馈的基础上,持续演进其核心能力,逐步补全了多模板应用在跨集群调度与租户资源管理方面的关键拼图。如今,Karmada 凭借其强大的扩展性和精细化的控制能力,已成为众多厂商构建AI应用多集群发布与管理平台的重要技术选型,有效支撑了其 AI 业务的规模化与敏捷化发展。本次分享将深入介绍Karmada为应对上述挑战而设计的核心特性,揭示 Karmada 如何提供一套端到端的多模板工作负载的多集群管理方案。 KCD 杭州站 × OpenInfra Days China 2025 当三秋桂子遇见分布式计算,当十里荷花碰撞微服务架构,这座被马可波罗誉为"世界最美丽华贵之天城"的数字经济之城,即将迎来一场重量级技术盛宴 —— KCD 杭州站与 OpenInfra Days China 的首次携手。KCD(Kubernetes Community Days,Kubernetes 社区日)由本土社区组织,得到云原生计算基金会(CNCF)的支持;OID(OpenInfra Days,开放基础设施开发者日)由本地用户组主办,获 OpenInfra 基金会支持。两者均包含主题演讲、分组会议,汇聚了开源生态的用户和开发者,旨在促进教育、协作和交流。今年这场由两大社区联合发起的开创性融合盛会,标志着云计算领域两大核心基础设施技术的深度协作与创新。它不仅充分展现开源社区的开放精神和跨社区协作的强大力量,更将共同推动 AI 与云计算技术的进步与发展。11 月,让我们相聚这座“淡妆浓抹总相宜”的城市,与全球云原生、人工智能及基础设施技术精英共赴盛会,在思想碰撞中书写技术创新的新篇章。扫描二维码免费注册,锁定限量席位门票包含所有论坛入场资格,免费午餐、茶歇及活动周边礼品活动核心信息活动时间:2025 年 11 月 15 日活动地点:中国 · 杭州 · 浙大森林会议中心主办单位 :KCD Hangzhou 2025 组委会OpenInfra 中国用户组支持单位:云原生计算基金会(CNCF)OpenInfra 基金会核心亮点速览首次跨界联动:Kubernetes Community Day(KCD)与 OpenInfra Days(OID)打破社区边界,实现在中国本土的首次联手,汇聚两大生态资源,实现 “1+1>2” 的学习体验。顶级阵容分享:行业顶尖专家与实战领袖组成 Speaker 团,拒绝空泛理论,只传落地干货,助力高效吸收核心知识。四大专题 + 40 余场演讲:从近百个议题投稿中,精挑细选出最实战、最干货、最具价值的演讲。围绕当下热门技术方向,设置四大专题论坛,AI/ML 技术创新,云原生技术实践,算力基础设施,安全与可信计算,精准匹配不同需求。议程全公开,超强 Speaker 阵容抢先看   Karmada 是CNCF 首个多云多集群容器编排项目(孵化级),旨在帮助用户像使用单个集群一样轻松管理跨云多集群,让基于 Karmada 的多云方案无缝融入云原生技术生态。社区吸引了来自华为、道客、浙江大学、腾讯、中国电子云、滴滴、Zendesk、携程等100多家公司的全球贡献者,广泛分布于20+国家和地区。Karmada 现已在华为云、道客、兴业数金、中国移动、中国联通、携程、360集团、新浪、中通快递等众多企业单位生产应用,为企业提供从单集群到多云架构的平滑演进方案。Karmada 官网:https://karmada.io/GitHub 地址:cid:link_0Slack 地址:https://slack.cncf.io/(#karmada)添加社区小助手k8s2222回复Karmada进入技术交流群    
  • [问题求助] CCE Autopilot 是否提供对新兴技术或者趋势的支持和集成?
    CCE Autopilot 是否提供对新兴技术或者趋势的支持和集成?
  • [问题求助] 使用CCE Autopilot进行容器管理时,又哪些安全特性?
    使用CCE Autopilot进行容器管理时,又哪些安全特性?
  • [问题求助] CCE Autopilot 如何与云原生生态进行集成?
    CCE Autopilot 如何与云原生生态进行集成?
  • [问题求助] ConfigMap在CCI Pod中的作用是什么?
    ConfigMap在CCI Pod中的作用是什么?
  • [问题求助] CCI cloudbursting目前是否存在哪些局限性?
    CCI cloudbursting目前是否存在哪些局限性?
  • [问题求助] CCI CloudBursting解决方案如何实现基础设施免运维?
    CCI CloudBursting解决方案如何实现基础设施免运维?
  • [公告] Karmada 用户组再迎新成员,Scatter Lab 正式加入!
    Karmada 非常高兴地宣布 Scatter Lab[1] 正式加入 Karmada 用户组[2],成为社区的重要成员。 作为云原生计算基金会(CNCF)旗下的项目,Karmada 致力于为用户提供强大的多集群管理和调度能力,帮助企业在复杂的分布式环境中实现高效的应用部署和管理。 Scatter Lab 的加入将进一步加强 Karmada 社区,为项目的持续创新带来新的活力,标志着 Karmada 社区发展和在多样化生产环境中采用的又一个重要里程碑。 关于 Scatter Lab Scatter Lab 是一家致力于通过尖端自然语言处理和生成式人工智能技术重塑娱乐体验的韩国科技公司。公司目前以 Zeta 为核心产品,这是一款沉浸式 AI 聊天娱乐平台,于 2024 年 4 月正式上线。Zeta 通过让用户与 AI 角色共同创作动态、个性化的叙事内容,重新定义了用户参与方式——从被动消费内容转变为实时、主动的共创体验。上线一年内,Zeta 注册用户已突破 200 万,月活跃用户达 80 万,用户日均使用时长超过 2 小时 40 分钟。Zeta 的核心技术是 Scatter Lab 自主研发的 AI 模型 Spotwrite-1。该模型不仅追求语言连贯性,更专注于“趣味性”,通过创造力、不可预测性,甚至可控的“幻觉”机制,为用户提供引人入胜的互动体验。公司已实现从数据、训练到应用的全栈垂直整合,兼顾高性能与成本效率。值得一提的是,Scatter Lab 自 2024 年第四季度起已连续六个季度实现盈利,在 AI 消费领域展现出罕见的快速增长与可持续商业化能力。秉持 “让 AI 成为人类叙事中的真正伙伴” 这一愿景,Scatter Lab 正以 Zeta 为起点,向全球市场拓展,首站为日本,致力于塑造下一代“AI 原生娱乐”的未来。  关于 Karmada 用户组  作为连接社区与用户的核心纽带,Karmada 用户组致力于打造一个深度融合、开放协作的高价值平台,推动成员间的高效联动与经验共享。通过技术支持、活动共创及最佳实践交流,Karmada 用户组将持续赋能用户在多云管理领域的能力提升,助力云原生多云多集群生态系统的蓬勃发展。其主要目标和功能包括:分享知识:促进 Karmada 用户之间的经验、挑战和解决方案交流促进协作:提供一个用户可以协作、分享想法并解决共同问题的平台支持用户:提供资源、教程和指导,帮助用户有效利用 Karmada收集反馈:倾听用户声音,以指导 Karmada 未来的发展方向社区活动组织:通过定期 meetup、网络研讨会和其他活动,增强社区参与度截至目前,Karmada 用户组已吸纳来自全球的 40+ 家机构和组织。更多使用场景及案例研究请查阅:https://karmada.io/adopters   欢迎加入用户组   任何在生产环境中使用 Karmada 的公司,其开发者均可申请加入 Karmada 用户组。无论您是最终用户还是云厂商,我们都欢迎您的加入。最终用户:指在其内部 IT 基础设施中直接部署和使用 Karmada 进行多云或多集群管理的企业或组织。这些公司利用 Karmada 作为关键技术底座来管理和优化算力资源。供应商:指那些将 Karmada 集成到他们的产品或服务中,以提供给其他企业或组织使用的公司。加入 Karmada 用户组,您可以与面临类似挑战的同行建立联系并分享 Karmada 实践经验,一同探索多云多集群生态,包括但不限于以下内容:社区技术支持:包括且不限于方案评估、日常运维、问题定位、版本升级等社区支持公司知名度提升:您的公司和团队将获得全球范围内更多的曝光机会技术影响力构建:邀请共建技术演讲,包括 KubeCon 等海内外业界大会Karmada 社区伙伴举办的线上、线下系列会议保持信息同步:及时接收重要信息更新,包括新版本的关键特性、重要 Bug 修复、安全风险等内容,确保您的项目能够第一时间受益于新的改进和增强顶尖人才招募:利用社区渠道招聘宣传,全球范围内精准招募优秀人才拓展商业机会:与 Karmada 生态系统其他成员建立潜在的商业联系和合作当前,加入 Karmada 用户组对社区贡献没有硬性要求,我们鼓励成员积极参与社区活动,分享经验与见解。然而,请注意,未来可能会要求成员对 Karmada 社区做出一定的贡献,以维持其用户组成员身份。这种贡献可以包括但不限于代码提交、文档编写、问题修复、使用案例分享等。访问下方 Karmada 用户组申请表单 [3],提交 issue 申请,即可接收申请进度。手机端可扫描下方二维码快捷填写申请表单。 扫码申请加入用户组更多信息,请访问:[1]Scatter Lab: https://www.scatterlab.co.kr/ko/intro[2]Karmada 用户组: cid:link_1[3]Karmada Adopter Group 申请加入表单地址: cid:link_0Karmada Adopter Group 欢迎您的加入!期待与您共同创建一个友好而活跃的空间,共享知识、最佳实践和经验,为企业与社区发展缔造更多可能。如需了解更多关于 Karmada Adopter Group 的信息,请联系:Maintainer Mailing Listcncf-karmada-maintainers@lists.cncf.io Karmada 是CNCF 首个多云多集群容器编排项目(孵化级),旨在帮助用户像使用单个集群一样轻松管理跨云多集群,让基于 Karmada 的多云方案无缝融入云原生技术生态。社区吸引了来自华为、道客、浙江大学、腾讯、中国电子云、滴滴、Zendesk、携程等100多家公司的全球贡献者,广泛分布于20+国家和地区。Karmada 现已在华为云、道客、兴业数金、中国移动、中国联通、携程、360集团、新浪、中通快递等众多企业单位生产应用,为企业提供从单集群到多云架构的平滑演进方案。Karmada 官网:https://karmada.io/GitHub 地址:https://github.com/karmada-io/karmadaSlack 地址:https://slack.cncf.io/(#karmada)添加社区小助手k8s2222回复Karmada进入技术交流群
  • [公告] 华为云 Serverless 云原生基础设施 | 极简体验,加速业务创新
    云原生加速向 Serverless 演进,业界将 Serverless 容器分为 Serverless Kubernetes 集群和 Serverless 器实例两种形态。华为云 Serverless 云原生基础设施致力于持续简化用户体验,帮助用户专注于构建应用程序,而无须管理集群以及资源,加速业务创新。   华为云云容器实例 CCI:cid:link_0 
  • [问题求助] Secret 在CCI pod中起到什么作用?
    Secret 在CCI pod中起到什么作用?
  • [问题求助] CCI pod是否支持多租户隔离?
    CCI pod是否支持多租户隔离?
  • [问题求助] CCI pod支持哪些类型接口?
    CCI pod支持哪些类型接口?
  • [问题求助] CCI的云原生cloudbursting有哪些计费方式?如何降低管理维护成本?
    CCI的云原生cloudbursting有哪些计费方式?如何降低管理维护成本?
  • [问题求助] 在使用CloudBursting解决方案时,如何进行故障排除和调试?
    在使用CloudBursting解决方案时,如何进行故障排除和调试?