-
华为云使用手写的keras训练代码构建模拟数据# create some dataX = np.linspace(-1, 1, 200)np.random.shuffle(X) # randomize the dataY = 0.5 * X + 2 + np.random.normal(0, 0.05, (200, ))# plot dataplt.scatter(X, Y)plt.show()构建模型from keras.models import Sequentialmodel = Sequential()# 可以简单地使用 .add() 来堆叠模型:from keras.layers import Densemodel.add(Dense(units=64, activation='relu', input_dim=100))model.add(Dense(units=10, activation='softmax'))配置学习过程# 在完成了模型的构建后, 可以使用 .compile() 来配置学习过程:model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])# 如果需要,你还可以进一步地配置你的优化器。Keras 的核心原则是使事情变得相当简单,同时又允许用户在需要的时候能够进行完全的控制(终极的控制是源代码的易扩展性)。model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True))训练# x_train 和 y_train 是 Numpy 数组 -- 就像在 Scikit-Learn API 中一样。model.fit(x_train, y_train, epochs=5, batch_size=32)# 或者,你可以手动地将批次的数据提供给模型:print('Training -----------')for step in range(10): cost = model.train_on_batch(X_train, Y_train) if step % 100 == 0: print('train cost: ', cost)评估loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)# 或者对新的数据生成预测:classes = model.predict(x_test, batch_size=128)可视化结果# plotting the predictionY_pred = model.predict(X_test)plt.scatter(X_test, Y_test)plt.plot(X_test, Y_pred)plt.show()
上滑加载中
推荐直播
-
全面解析华为云EI-API服务:理论基础与实践应用指南
2024/11/29 周五 18:20-20:20
Alex 华为云学堂技术讲师
本期直播给大家带来的是理论与实践结合的华为云EI-API的服务介绍。从“主要功能,应用场景,实践案例,调用流程”四个维度来深入解析“语音交互API,文字识别API,自然语言处理API,图像识别API及图像搜索API”五大场景下API服务,同时结合实验,来加深开发者对API服务理解。
回顾中 -
企业员工、应届毕业生、在读研究生共探项目实践
2024/12/02 周一 19:00-21:00
姚圣伟 在职软件工程师 昇腾社区优秀开发者 华为云云享专家 HCDG天津地区发起人
大神带你一键了解和掌握LeakyReLU自定义算子在ONNX网络中应用和优化技巧,在线分享如何入门,以及在工作中如何结合实际项目进行学习
即将直播 -
昇腾云服务ModelArts深度解析:理论基础与实践应用指南
2024/12/03 周二 14:30-16:30
Alex 华为云学堂技术讲师
如何快速创建和部署模型,管理全周期AI工作流呢?本期直播聚焦华为昇腾云服务ModelArts一站式AI开发平台功能介绍,同时结合基于ModelArts 的实践性实验,帮助开发者从理论到实验更好地理解和使用ModelArts。
去报名
热门标签