-
华为云使用手写的keras训练代码构建模拟数据# create some dataX = np.linspace(-1, 1, 200)np.random.shuffle(X) # randomize the dataY = 0.5 * X + 2 + np.random.normal(0, 0.05, (200, ))# plot dataplt.scatter(X, Y)plt.show()构建模型from keras.models import Sequentialmodel = Sequential()# 可以简单地使用 .add() 来堆叠模型:from keras.layers import Densemodel.add(Dense(units=64, activation='relu', input_dim=100))model.add(Dense(units=10, activation='softmax'))配置学习过程# 在完成了模型的构建后, 可以使用 .compile() 来配置学习过程:model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])# 如果需要,你还可以进一步地配置你的优化器。Keras 的核心原则是使事情变得相当简单,同时又允许用户在需要的时候能够进行完全的控制(终极的控制是源代码的易扩展性)。model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True))训练# x_train 和 y_train 是 Numpy 数组 -- 就像在 Scikit-Learn API 中一样。model.fit(x_train, y_train, epochs=5, batch_size=32)# 或者,你可以手动地将批次的数据提供给模型:print('Training -----------')for step in range(10): cost = model.train_on_batch(X_train, Y_train) if step % 100 == 0: print('train cost: ', cost)评估loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)# 或者对新的数据生成预测:classes = model.predict(x_test, batch_size=128)可视化结果# plotting the predictionY_pred = model.predict(X_test)plt.scatter(X_test, Y_test)plt.plot(X_test, Y_pred)plt.show()
上滑加载中
推荐直播
-
GaussDB管理平台TPOPS,DBA高效运维的一站式解决方案
2024/12/24 周二 16:30-18:00
Leo 华为云数据库DTSE技术布道师
数据库的复杂运维,是否让你感到头疼不已?今天,华为云GaussDB管理平台将彻底来改观!本期直播,我们将深入探索GaussDB管理平台的TPOPS功能,带你感受一键式部署安装的便捷,和智能化运维管理的高效,让复杂的运维、管理变得简单,让简单变得可靠。
回顾中 -
DTT年度收官盛典:华为开发者空间大咖汇,共探云端开发创新
2025/01/08 周三 16:30-18:00
Yawei 华为云开发工具和效率首席专家 Edwin 华为开发者空间产品总监
数字化转型进程持续加速,驱动着技术革新发展,华为开发者空间如何巧妙整合鸿蒙、昇腾、鲲鹏等核心资源,打破平台间的壁垒,实现跨平台协同?在科技迅猛发展的今天,开发者们如何迅速把握机遇,实现高效、创新的技术突破?DTT 年度收官盛典,将与大家共同探索华为开发者空间的创新奥秘。
回顾中
热门标签