-
HDFS的DataNode在低频率重启过程中,HBase集群的RegionServer WAL写流程,会偶现以下WAL超时卡住错误,如何解决呢:2024-08-26 15:35:13,294 ERROR [RS_CLOSE_REGION-regionserver/cqbs028:60020-1] executor.EventHandler: Caught throwable while processing event M_RS_CLOSE_REGIONjava.lang.RuntimeException: org.apache.hadoop.hbase.exceptions.TimeoutIOException: Failed to get sync result after 300000 ms for txid=818811, WAL system stuck?at org.apache.hadoop.hbase.regionserver.handler.CloseRegionHandler.process(CloseRegionHandler.java:116)at org.apache.hadoop.hbase.executor.EventHandler.run(EventHandler.java:104)Caused by: org.apache.hadoop.hbase.exceptions.TimeoutIOException: Failed to get sync result after 300000 ms for txid=818811, WAL system stuck?at org.apache.hadoop.hbase.regionserver.wal.SyncFuture.get(SyncFuture.java:148)at org.apache.hadoop.hbase.regionserver.wal.AbstractFSWAL.blockOnSync(AbstractFSWAL.java:711)at org.apache.hadoop.hbase.regionserver.wal.AsyncFSWAL.sync(AsyncFSWAL.java:631)at org.apache.hadoop.hbase.regionserver.wal.WALUtil.doFullAppendTransaction(WALUtil.java:158)at org.apache.hadoop.hbase.regionserver.wal.WALUtil.writeMarker(WALUtil.java:136)at org.apache.hadoop.hbase.regionserver.wal.WALUtil.writeRegionEventMarker(WALUtil.java:101)at org.apache.hadoop.hbase.regionserver.HRegion.writeRegionCloseMarker(HRegion.java:1145)at org.apache.hadoop.hbase.regionserver.HRegion.doClose(HRegion.java:1684)at org.apache.hadoop.hbase.regionserver.HRegion.close(HRegion.java:1501)at org.apache.hadoop.hbase.regionserver.handler.CloseRegionHandler.process(CloseRegionHandler.java:104)在停止RegionServer的过程中,也有可能会因为WAL卡住,停止RegionServer慢:java.lang.RuntimeException: org.apache.hadoop.hbase.exceptions.TimeoutIOException: Failed to get sync result after 300000 ms for txid=818767, WAL system stuck?at org.apache.hadoop.hbase.regionserver.handler.CloseRegionHandler.process(CloseRegionHandler.java:116)at org.apache.hadoop.hbase.executor.EventHandler.run(EventHandler.java:104)at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)at java.base/java.lang.Thread.run(Thread.java:829)Caused by: org.apache.hadoop.hbase.exceptions.TimeoutIOException: Failed to get sync result after 300000 ms for txid=818767, WAL system stuck?at org.apache.hadoop.hbase.regionserver.wal.SyncFuture.get(SyncFuture.java:148)at org.apache.hadoop.hbase.regionserver.wal.AbstractFSWAL.blockOnSync(AbstractFSWAL.java:711)at org.apache.hadoop.hbase.regionserver.wal.AsyncFSWAL.sync(AsyncFSWAL.java:631)at org.apache.hadoop.hbase.regionserver.wal.WALUtil.doFullAppendTransaction(WALUtil.java:158)at org.apache.hadoop.hbase.regionserver.wal.WALUtil.writeMarker(WALUtil.java:136)at org.apache.hadoop.hbase.regionserver.wal.WALUtil.writeRegionEventMarker(WALUtil.java:101)at org.apache.hadoop.hbase.regionserver.HRegion.writeRegionCloseMarker(HRegion.java:1145)at org.apache.hadoop.hbase.regionserver.HRegion.doClose(HRegion.java:1684)at org.apache.hadoop.hbase.regionserver.HRegion.close(HRegion.java:1501)at org.apache.hadoop.hbase.regionserver.handler.CloseRegionHandler.process(CloseRegionHandler.java:104)
-
环境:FusionInsight HD 6513背景: 1. 原集群datanode 机器基本为ARM,且配置较高,设备较新; 2. 现有一批低性能、低配置X86主机,需扩容到集群中;计划:启动HDFS NodeLabel 功能,对HDFS 目录进行打标签,将后扩容主机设置成指定标签目录的主机,以此来规避机器异构可能出现的负载不均等问题。需求: 1. 帮忙确认一下该方案是否可行,是否有更好的方案。 2. 如果此方案可行,是否有需要注意的方向,是否有踩坑案例(越详细越好)可以提供一下。烦请社区的大佬,帮帮忙!
-
采用spark将计算好的数据写入高斯数据库,提示invalid input syntax for type oid:"xxxxx"。导致部分数据无法写入oid这个是系统表中对数据库资源的标志吧,sql中没有修改这个字段。这个异常具体怎么回事,有大神能够帮忙解释一下吗?
-
FusionInsight HD 6513 在线升级 FusionInsight HD 6517版本 需要多长时间?怎么评估的?
-
FusionInsight HD 6513升级 FusionInsight HD 6517版本,是否支持部分组件在线升级,其他组件离线升级?
-
HD 线下6.5.1.7版本集群,hdfs 将副本临时调整1后再调回3会发生什么现象?
-
Python 读写入hdfs代码import sys sys.path.insert(0, '/opt/140client/Spark2x/spark/python') sys.path.insert(0, '/opt/140client/Spark2x/spark/python/lib/py4j-0.10.9-src.zip') import os os.environ["PYSPARK_PYTHON"]="/usr/anaconda3/bin/python3" import pyspark from pyspark.sql import SparkSession from pyspark import SparkConf from pyspark import SparkContext os.system('source /opt/140client/bigdata_env') from pyspark.sql.types import StructType, StructField, StringType, IntegerType spark = SparkSession.builder \ .appName("Generate Parquet File") \ .getOrCreate() data = [("Alice", 25, "2023-08-29"), ("Bob", 30, "2023-08-30")] schema = StructType([ StructField("Name", StringType(), nullable=False), StructField("Age", IntegerType(), nullable=False), StructField("ts", StringType(), nullable=True) ]) df = spark.createDataFrame(data, schema) output_path = "/tmp/sandbox/output.parquet" df.write.parquet(output_path)操作步骤执行命令source /opt/140client/bigdata_env spark-submit --master yarn /opt/sandbox/parquet.py --keytab /opt/sandbox/user.keytab --principal username查看生成文件 python读hdfs写hudi创建hudi表代码create table if not exists hudi0829( Name string, Age int, ts string ) using hudi location '/tmp/sandbox/hudi0829' options ( type = 'mor', primaryKey = 'Name', preCombineField = 'ts' );查看表 读hdfs写入hudi代码import sys sys.path.insert(0, '/opt/140client/Spark2x/spark/python') sys.path.insert(0, '/opt/140client/Spark2x/spark/python/lib/py4j-0.10.9-src.zip') import os os.environ["PYSPARK_PYTHON"]="/usr/anaconda3/bin/python3" sys.path.append('/opt/140client/Hudi/hudi/lib/') import pyspark from pyspark.sql import SparkSession from pyspark import SparkConf from pyspark import SparkContext #from hudi.config import HoodieConfig #from hudi.dataframe import create_hudi_dataset os.system('source /opt/140client/bigdata_env') spark = SparkSession.builder \ .appName("Write Parquet to Hudi") \ .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") \ .getOrCreate() parquet_df = spark.read.parquet("hdfs://hacluster/tmp/sandbox/output.parquet") hudi_table_path = "hdfs://hacluster/tmp/sandbox/hudi0829" parquet_df.write \ .format("org.apache.hudi") \ .option("hoodie.datasource.write.recordkey.field", "Name") \ .option("hoodie.datasource.write.partitionpath.field", "ts") \ .option("hoodie.table.name", "hudi0829") \ .option("hoodie.datasource.write.operation", "upsert") \ .mode("append") \ .save(hudi_table_path)执行命令spark-submit --master yarn /opt/sandbox/parquet_hudi.py --keytab /opt/sandbox/user.keytab --principal username
-
线下HD 6517版本集群,业务客户端到集群之前的端口22禁用对使用上有没有影响?
-
为什么不建议Flume和DataNode部署在同一节点?为什么会存在数据不均衡的风险?
推荐直播
-
华为AI技术发展与挑战:集成需求分析的实战指南
2024/11/26 周二 18:20-20:20
Alex 华为云学堂技术讲师
本期直播将综合讨论华为AI技术的发展现状,技术挑战,并深入探讨华为AI应用开发过程中的需求分析过程,从理论到实践帮助开发者快速掌握华为AI应用集成需求的框架和方法。
去报名 -
华为云DataArts+DWS助力企业数据治理一站式解决方案及应用实践
2024/11/27 周三 16:30-18:00
Walter.chi 华为云数据治理DTSE技术布道师
想知道数据治理项目中,数据主题域如何合理划分?数据标准及主数据标准如何制定?数仓分层模型如何合理规划?华为云DataArts+DWS助力企业数据治理项目一站式解决方案和应用实践告诉您答案!本期将从数据趋势、数据治理方案、数据治理规划及落地,案例分享四个方面来助力企业数据治理项目合理咨询规划及顺利实施。
去报名
热门标签