- 资产集市
- 教学
- 实践
- AI说
- 案例库
- 生态合作
- 专区
中国站
简体中文2用户已评价
随着人们生活水平的提高,我国的汽车消费量是世界上排在前列的国家之一。同样,汽车工业也是支持我国实体经济发展的关键产业,与汽车有关的各种产业也多种多样。汽车行业与我们每个人的人身安全息息有关。汽车零部件的质量是整车质量的基础,汽车零件的缺陷检测可以帮助提高汽车的安全性。然而目前人工目视检测的方式不仅存在效率低下,还可能由于人工疲劳造成缺陷零部件流入行业下流,造成潜在的安全风险。
本案例基于目标检测的方法,使用工业相机成像的数据,训练一个汽车零部件表面缺陷识别模型,可以检测出三种汽车零部件(轴承、火花塞和摇把)表面存在多种缺陷。
本案例推荐使用AI框架:Pytorch-1.4.0;
本案例需使用 GPU 运行,请查看《ModelArts JupyterLab 硬件规格使用指南》了解切换硬件规格的方法;
如果您是第一次使用 JupyterLab,请查看《ModelArts JupyterLab使用指导》了解使用方法;
如果您在使用 JupyterLab 过程中碰到报错,请参考《ModelArts JupyterLab常见问题解决办法》尝试解决问题。
本数据来自工业相机成像。数据集由三种数据构成:轴承、火花塞和摇把。
轴承表面一共存在四种缺陷:
1、连接处缺陷:零件正面两种不同材质连接处出现错误,视为连接处缺陷
2、直角边缺陷:相对于合格零件来说,直角边出现缺口,视为直角边缺陷
3、空洞缺陷(连接处缺陷):零件正面两种不同材质连接处出现错误,视为连接处缺陷
4、毛刺:零件周围出现不规则凸起,视为毛刺
火花塞一共存在三种缺陷:
1、垂直度问题:瓷下面的接线螺母与火花塞本身的中心线不平行 发生弯曲
2、拔丝异常:螺纹丝纹不完整不顺滑或者遭到破坏
3、间距缺陷:侧电极与中心电极严格的技术要求一般是0.6到1.6毫米
摇把一共存在三种缺陷:
1、颜色缺陷:该零件正常表面为统一色,生产过程中表面出现其他颜色视为颜色缺陷
2、划痕缺陷:相对于合格的汽车塑料零件,摇把表面出现划痕,视为划痕缺陷
3、磨损缺陷:在汽车塑料零件表侧面及外侧部分出现磨损不平整,视为磨损缺陷
import moxing as mox
import os
mox.file.copy_parallel('obs://obs-aigallery-zc/notebook/car-parts-detect/','./src')
root_path = './src'
os.chdir(root_path)
INFO:root:Using MoXing-v1.17.3-43fbf97f INFO:root:Using OBS-Python-SDK-3.20.7
注:本案例采用汽车零部件表面缺陷识别数据集,详细数据集已经放入OBS桶中,路径为obs://obs-aigallery-zc/notebook/car-parts-detect/data。
!cd ./code && pip install -r requirements.txt
Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple
Requirement already satisfied: torch==1.6.0 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from -r requirements.txt (line 1)) (1.6.0)
Requirement already satisfied: torchvision==0.7.0 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from -r requirements.txt (line 2)) (0.7.0)
Requirement already satisfied: pycocotools==2.0.2 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from -r requirements.txt (line 3)) (2.0.2)
Requirement already satisfied: matplotlib>=2.1.0 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from pycocotools==2.0.2->-r requirements.txt (line 3)) (3.4.3)
Requirement already satisfied: setuptools>=18.0 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from pycocotools==2.0.2->-r requirements.txt (line 3)) (52.0.0.post20210125)
Requirement already satisfied: cython>=0.27.3 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from pycocotools==2.0.2->-r requirements.txt (line 3)) (0.27.3)
Requirement already satisfied: numpy in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from torch==1.6.0->-r requirements.txt (line 1)) (1.17.0)
Requirement already satisfied: future in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from torch==1.6.0->-r requirements.txt (line 1)) (0.18.2)
Requirement already satisfied: pillow>=4.1.1 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from torchvision==0.7.0->-r requirements.txt (line 2)) (6.2.0)
Requirement already satisfied: cycler>=0.10 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from matplotlib>=2.1.0->pycocotools==2.0.2->-r requirements.txt (line 3)) (0.10.0)
Requirement already satisfied: pyparsing>=2.2.1 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from matplotlib>=2.1.0->pycocotools==2.0.2->-r requirements.txt (line 3)) (2.4.7)
Requirement already satisfied: python-dateutil>=2.7 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from matplotlib>=2.1.0->pycocotools==2.0.2->-r requirements.txt (line 3)) (2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from matplotlib>=2.1.0->pycocotools==2.0.2->-r requirements.txt (line 3)) (1.3.2)
Requirement already satisfied: six in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from cycler>=0.10->matplotlib>=2.1.0->pycocotools==2.0.2->-r requirements.txt (line 3)) (1.16.0)
WARNING: You are using pip version 21.0.1; however, version 21.1.3 is available.
You should consider upgrading via the '/home/ma-user/anaconda3/envs/PyTorch-1.4/bin/python -m pip install --upgrade pip' command.
!python ./code/baseline_released.py \
--data_url ./data \
--train_url ./data/training/ \
--last_path ./submission/model/ \
--train-dir ./ckpt/ \
--ckpt-dir ./code/checkpoints/ \
--num-classes 10 \
--num-epochs 2 \
--batch-size 8
INFO:root:Using MoXing-v1.17.3-43fbf97f INFO:root:Using OBS-Python-SDK-3.20.7 ./data 2021hwsz-data-Annotations.zip 2021hwsz-data-Images.zip training ./data ./data/training/ ./submission/model/ /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages/torchvision/ops/boxes.py:101: UserWarning: This overload of nonzero is deprecated: nonzero() Consider using one of the following signatures instead: nonzero(*, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.) keep = keep.nonzero().squeeze(1) Epoch: [0] [ 0/581] eta: 0:15:37 lr: 0.000027 loss: 4.3435 (4.3435) loss_classifier: 2.6420 (2.6420) loss_box_reg: 0.0113 (0.0113) loss_objectness: 1.6316 (1.6316) loss_rpn_box_reg: 0.0586 (0.0586) time: 1.6141 data: 0.5689 max mem: 8738 Epoch: [0] [ 10/581] eta: 0:08:25 lr: 0.000199 loss: 3.7142 (3.8453) loss_classifier: 2.3811 (2.2007) loss_box_reg: 0.0087 (0.0105) loss_objectness: 1.1346 (1.5238) loss_rpn_box_reg: 0.0586 (0.1103) time: 0.8854 data: 0.0761 max mem: 9004 Epoch: [0] [ 20/581] eta: 0:07:55 lr: 0.000372 loss: 1.9897 (2.4596) loss_classifier: 0.9709 (1.3206) loss_box_reg: 0.0196 (0.0215) loss_objectness: 0.6049 (1.0013) loss_rpn_box_reg: 0.0946 (0.1162) time: 0.8094 data: 0.0260 max mem: 9214 Epoch: [0] [ 30/581] eta: 0:07:40 lr: 0.000544 loss: 0.3589 (1.7705) loss_classifier: 0.1026 (0.9193) loss_box_reg: 0.0275 (0.0237) loss_objectness: 0.1562 (0.7261) loss_rpn_box_reg: 0.0740 (0.1015) time: 0.8072 data: 0.0258 max mem: 9214 Epoch: [0] [ 40/581] eta: 0:07:27 lr: 0.000716 loss: 0.3433 (1.4644) loss_classifier: 0.1101 (0.7483) loss_box_reg: 0.0364 (0.0351) loss_objectness: 0.1340 (0.5837) loss_rpn_box_reg: 0.0646 (0.0973) time: 0.8065 data: 0.0260 max mem: 9214 Epoch: [0] [ 50/581] eta: 0:07:16 lr: 0.000888 loss: 0.4946 (1.2727) loss_classifier: 0.1655 (0.6376) loss_box_reg: 0.0720 (0.0443) loss_objectness: 0.1121 (0.4905) loss_rpn_box_reg: 0.0756 (0.1002) time: 0.8038 data: 0.0251 max mem: 9214 Epoch: [0] [ 60/581] eta: 0:07:06 lr: 0.001061 loss: 0.3955 (1.1218) loss_classifier: 0.1592 (0.5564) loss_box_reg: 0.0863 (0.0528) loss_objectness: 0.0832 (0.4221) loss_rpn_box_reg: 0.0427 (0.0906) time: 0.8010 data: 0.0245 max mem: 9214 ignore small bbox < 10 2020-01-14_15_35_18_680.jpg ignore small bbox < 10 2020-01-14_15_35_28_206.jpg ignore small bbox < 10 2020-01-14_15_35_59_180.jpg ignore small bbox < 10 2020-01-14_15_35_59_180.jpg Epoch: [0] [ 70/581] eta: 0:06:57 lr: 0.001233 loss: 0.3567 (1.0225) loss_classifier: 0.1348 (0.4986) loss_box_reg: 0.0939 (0.0588) loss_objectness: 0.0631 (0.3752) loss_rpn_box_reg: 0.0422 (0.0898) time: 0.7991 data: 0.0243 max mem: 9214 Epoch: [0] [ 80/581] eta: 0:06:48 lr: 0.001405 loss: 0.3457 (0.9366) loss_classifier: 0.1381 (0.4546) loss_box_reg: 0.0857 (0.0623) loss_objectness: 0.0544 (0.3357) loss_rpn_box_reg: 0.0461 (0.0840) time: 0.8021 data: 0.0243 max mem: 9214 Epoch: [0] [ 90/581] eta: 0:06:39 lr: 0.001577 loss: 0.3125 (0.8667) loss_classifier: 0.1333 (0.4188) loss_box_reg: 0.0861 (0.0656) loss_objectness: 0.0500 (0.3037) loss_rpn_box_reg: 0.0381 (0.0787) time: 0.8039 data: 0.0246 max mem: 9214 Epoch: [0] [100/581] eta: 0:06:30 lr: 0.001750 loss: 0.2927 (0.8116) loss_classifier: 0.1201 (0.3893) loss_box_reg: 0.0820 (0.0673) loss_objectness: 0.0438 (0.2789) loss_rpn_box_reg: 0.0378 (0.0761) time: 0.8018 data: 0.0248 max mem: 9214 Epoch: [0] [110/581] eta: 0:06:22 lr: 0.001922 loss: 0.3272 (0.7696) loss_classifier: 0.1209 (0.3665) loss_box_reg: 0.1002 (0.0706) loss_objectness: 0.0442 (0.2578) loss_rpn_box_reg: 0.0499 (0.0747) time: 0.8009 data: 0.0247 max mem: 9214 Epoch: [0] [120/581] eta: 0:06:13 lr: 0.002094 loss: 0.3272 (0.7363) loss_classifier: 0.1290 (0.3475) loss_box_reg: 0.1040 (0.0750) loss_objectness: 0.0390 (0.2410) loss_rpn_box_reg: 0.0499 (0.0729) time: 0.8005 data: 0.0244 max mem: 9214 Epoch: [0] [130/581] eta: 0:06:05 lr: 0.002266 loss: 0.3754 (0.7087) loss_classifier: 0.1245 (0.3309) loss_box_reg: 0.1102 (0.0780) loss_objectness: 0.0428 (0.2267) loss_rpn_box_reg: 0.0625 (0.0731) time: 0.8001 data: 0.0241 max mem: 9214 Epoch: [0] [140/581] eta: 0:05:57 lr: 0.002439 loss: 0.3424 (0.6851) loss_classifier: 0.1249 (0.3170) loss_box_reg: 0.1264 (0.0824) loss_objectness: 0.0526 (0.2139) loss_rpn_box_reg: 0.0449 (0.0718) time: 0.8067 data: 0.0247 max mem: 9214 Epoch: [0] [150/581] eta: 0:05:53 lr: 0.002611 loss: 0.3424 (0.6685) loss_classifier: 0.1249 (0.3052) loss_box_reg: 0.1136 (0.0837) loss_objectness: 0.0659 (0.2069) loss_rpn_box_reg: 0.0449 (0.0728) time: 0.8879 data: 0.0430 max mem: 9268 Epoch: [0] [160/581] eta: 0:05:48 lr: 0.002783 loss: 0.3990 (0.6557) loss_classifier: 0.1165 (0.2939) loss_box_reg: 0.1083 (0.0866) loss_objectness: 0.0749 (0.1989) loss_rpn_box_reg: 0.1080 (0.0764) time: 0.9598 data: 0.0607 max mem: 9268 Epoch: [0] [170/581] eta: 0:05:43 lr: 0.002955 loss: 0.4238 (0.6429) loss_classifier: 0.1399 (0.2862) loss_box_reg: 0.1349 (0.0902) loss_objectness: 0.0574 (0.1900) loss_rpn_box_reg: 0.0888 (0.0764) time: 0.9513 data: 0.0606 max mem: 9268 Epoch: [0] [180/581] eta: 0:05:36 lr: 0.003128 loss: 0.3991 (0.6284) loss_classifier: 0.1437 (0.2780) loss_box_reg: 0.1398 (0.0933) loss_objectness: 0.0450 (0.1817) loss_rpn_box_reg: 0.0633 (0.0754) time: 0.9327 data: 0.0608 max mem: 9268 Epoch: [0] [190/581] eta: 0:05:30 lr: 0.003300 loss: 0.3767 (0.6148) loss_classifier: 0.1175 (0.2691) loss_box_reg: 0.1628 (0.0975) loss_objectness: 0.0321 (0.1744) loss_rpn_box_reg: 0.0364 (0.0738) time: 0.9208 data: 0.0617 max mem: 9268 Epoch: [0] [200/581] eta: 0:05:22 lr: 0.003472 loss: 0.3087 (0.5998) loss_classifier: 0.1064 (0.2607) loss_box_reg: 0.1517 (0.0998) loss_objectness: 0.0247 (0.1673) loss_rpn_box_reg: 0.0189 (0.0720) time: 0.9129 data: 0.0623 max mem: 9268 Epoch: [0] [210/581] eta: 0:05:15 lr: 0.003644 loss: 0.3108 (0.5904) loss_classifier: 0.1017 (0.2539) loss_box_reg: 0.1263 (0.1004) loss_objectness: 0.0332 (0.1629) loss_rpn_box_reg: 0.0427 (0.0732) time: 0.9030 data: 0.0634 max mem: 9268 Epoch: [0] [220/581] eta: 0:05:07 lr: 0.003817 loss: 0.3217 (0.5785) loss_classifier: 0.0964 (0.2465) loss_box_reg: 0.0995 (0.1000) loss_objectness: 0.0615 (0.1589) loss_rpn_box_reg: 0.0556 (0.0732) time: 0.9082 data: 0.0644 max mem: 9268 Epoch: [0] [230/581] eta: 0:04:59 lr: 0.003989 loss: 0.3350 (0.5711) loss_classifier: 0.1045 (0.2411) loss_box_reg: 0.0995 (0.1003) loss_objectness: 0.0690 (0.1561) loss_rpn_box_reg: 0.0556 (0.0736) time: 0.9048 data: 0.0647 max mem: 9268 Epoch: [0] [240/581] eta: 0:04:51 lr: 0.004161 loss: 0.3350 (0.5594) loss_classifier: 0.1077 (0.2350) loss_box_reg: 0.1034 (0.1005) loss_objectness: 0.0657 (0.1520) loss_rpn_box_reg: 0.0427 (0.0719) time: 0.8945 data: 0.0645 max mem: 9268 Epoch: [0] [250/581] eta: 0:04:44 lr: 0.004333 loss: 0.2663 (0.5486) loss_classifier: 0.0975 (0.2302) loss_box_reg: 0.1060 (0.1012) loss_objectness: 0.0339 (0.1472) loss_rpn_box_reg: 0.0223 (0.0701) time: 0.8987 data: 0.0644 max mem: 9268 Epoch: [0] [260/581] eta: 0:04:35 lr: 0.004505 loss: 0.2323 (0.5360) loss_classifier: 0.0816 (0.2244) loss_box_reg: 0.1115 (0.1014) loss_objectness: 0.0228 (0.1422) loss_rpn_box_reg: 0.0169 (0.0679) time: 0.9000 data: 0.0641 max mem: 9268 Epoch: [0] [270/581] eta: 0:04:27 lr: 0.004678 loss: 0.2115 (0.5263) loss_classifier: 0.0751 (0.2195) loss_box_reg: 0.1048 (0.1022) loss_objectness: 0.0162 (0.1380) loss_rpn_box_reg: 0.0169 (0.0665) time: 0.8980 data: 0.0647 max mem: 9268 Epoch: [0] [280/581] eta: 0:04:19 lr: 0.004850 loss: 0.2675 (0.5184) loss_classifier: 0.0939 (0.2155) loss_box_reg: 0.1329 (0.1034) loss_objectness: 0.0233 (0.1342) loss_rpn_box_reg: 0.0214 (0.0653) time: 0.8937 data: 0.0649 max mem: 9268 Epoch: [0] [290/581] eta: 0:04:10 lr: 0.005022 loss: 0.2675 (0.5100) loss_classifier: 0.0829 (0.2108) loss_box_reg: 0.1082 (0.1039) loss_objectness: 0.0233 (0.1304) loss_rpn_box_reg: 0.0434 (0.0649) time: 0.8812 data: 0.0642 max mem: 9268 Epoch: [0] [300/581] eta: 0:04:02 lr: 0.005194 loss: 0.2382 (0.5000) loss_classifier: 0.0700 (0.2058) loss_box_reg: 0.0987 (0.1037) loss_objectness: 0.0174 (0.1267) loss_rpn_box_reg: 0.0340 (0.0639) time: 0.8723 data: 0.0667 max mem: 9268 Epoch: [0] [310/581] eta: 0:03:53 lr: 0.005367 loss: 0.2255 (0.4946) loss_classifier: 0.0682 (0.2018) loss_box_reg: 0.0994 (0.1039) loss_objectness: 0.0197 (0.1237) loss_rpn_box_reg: 0.0318 (0.0651) time: 0.8676 data: 0.0661 max mem: 9268 Epoch: [0] [320/581] eta: 0:03:45 lr: 0.005539 loss: 0.2730 (0.4896) loss_classifier: 0.0761 (0.1980) loss_box_reg: 0.1002 (0.1040) loss_objectness: 0.0246 (0.1207) loss_rpn_box_reg: 0.0727 (0.0668) time: 0.8700 data: 0.0649 max mem: 9268 Epoch: [0] [330/581] eta: 0:03:36 lr: 0.005711 loss: 0.3171 (0.4846) loss_classifier: 0.0829 (0.1951) loss_box_reg: 0.1086 (0.1046) loss_objectness: 0.0281 (0.1182) loss_rpn_box_reg: 0.0692 (0.0667) time: 0.8805 data: 0.0691 max mem: 9268 Epoch: [0] [340/581] eta: 0:03:28 lr: 0.005883 loss: 0.2944 (0.4784) loss_classifier: 0.0949 (0.1921) loss_box_reg: 0.1086 (0.1048) loss_objectness: 0.0295 (0.1157) loss_rpn_box_reg: 0.0344 (0.0657) time: 0.8840 data: 0.0727 max mem: 9268 Epoch: [0] [350/581] eta: 0:03:19 lr: 0.006056 loss: 0.2696 (0.4752) loss_classifier: 0.1029 (0.1900) loss_box_reg: 0.1167 (0.1056) loss_objectness: 0.0275 (0.1143) loss_rpn_box_reg: 0.0229 (0.0653) time: 0.8673 data: 0.0673 max mem: 9268 Epoch: [0] [360/581] eta: 0:03:10 lr: 0.006228 loss: 0.2696 (0.4700) loss_classifier: 0.1029 (0.1874) loss_box_reg: 0.1167 (0.1059) loss_objectness: 0.0302 (0.1122) loss_rpn_box_reg: 0.0230 (0.0645) time: 0.8509 data: 0.0614 max mem: 9268 Epoch: [0] [370/581] eta: 0:03:02 lr: 0.006400 loss: 0.2556 (0.4651) loss_classifier: 0.0789 (0.1844) loss_box_reg: 0.0995 (0.1058) loss_objectness: 0.0302 (0.1102) loss_rpn_box_reg: 0.0479 (0.0647) time: 0.8469 data: 0.0614 max mem: 9268 Epoch: [0] [380/581] eta: 0:02:53 lr: 0.006572 loss: 0.2556 (0.4596) loss_classifier: 0.0789 (0.1818) loss_box_reg: 0.0991 (0.1058) loss_objectness: 0.0279 (0.1080) loss_rpn_box_reg: 0.0479 (0.0640) time: 0.8374 data: 0.0601 max mem: 9268 Epoch: [0] [390/581] eta: 0:02:44 lr: 0.006745 loss: 0.2351 (0.4545) loss_classifier: 0.0804 (0.1794) loss_box_reg: 0.0981 (0.1059) loss_objectness: 0.0194 (0.1058) loss_rpn_box_reg: 0.0284 (0.0634) time: 0.8408 data: 0.0603 max mem: 9268 Epoch: [0] [400/581] eta: 0:02:35 lr: 0.006917 loss: 0.2559 (0.4524) loss_classifier: 0.0854 (0.1779) loss_box_reg: 0.1202 (0.1071) loss_objectness: 0.0194 (0.1040) loss_rpn_box_reg: 0.0385 (0.0634) time: 0.8503 data: 0.0613 max mem: 9268 Epoch: [0] [410/581] eta: 0:02:27 lr: 0.007089 loss: 0.3771 (0.4505) loss_classifier: 0.1157 (0.1761) loss_box_reg: 0.1322 (0.1075) loss_objectness: 0.0337 (0.1027) loss_rpn_box_reg: 0.0765 (0.0642) time: 0.8487 data: 0.0609 max mem: 9268 Epoch: [0] [420/581] eta: 0:02:18 lr: 0.007261 loss: 0.3816 (0.4484) loss_classifier: 0.0907 (0.1740) loss_box_reg: 0.1172 (0.1078) loss_objectness: 0.0452 (0.1019) loss_rpn_box_reg: 0.0837 (0.0648) time: 0.8507 data: 0.0611 max mem: 9268 Epoch: [0] [430/581] eta: 0:02:11 lr: 0.007434 loss: 0.3826 (0.4475) loss_classifier: 0.0930 (0.1741) loss_box_reg: 0.1118 (0.1078) loss_objectness: 0.0586 (0.1014) loss_rpn_box_reg: 0.0416 (0.0641) time: 1.1058 data: 0.1647 max mem: 9268 Epoch: [0] [440/581] eta: 0:02:05 lr: 0.007606 loss: 0.4979 (0.4526) loss_classifier: 0.2747 (0.1776) loss_box_reg: 0.1505 (0.1109) loss_objectness: 0.0579 (0.1007) loss_rpn_box_reg: 0.0179 (0.0635) time: 1.4237 data: 0.2378 max mem: 9268 ignore small bbox < 10 2021-05-16-17-01-48.jpg Epoch: [0] [450/581] eta: 0:01:57 lr: 0.007778 loss: 0.6634 (0.4596) loss_classifier: 0.3065 (0.1810) loss_box_reg: 0.2350 (0.1147) loss_objectness: 0.0756 (0.1009) loss_rpn_box_reg: 0.0211 (0.0629) time: 1.4947 data: 0.2105 max mem: 9268 Epoch: [0] [460/581] eta: 0:01:50 lr: 0.007950 loss: 0.7618 (0.4682) loss_classifier: 0.3065 (0.1846) loss_box_reg: 0.3185 (0.1207) loss_objectness: 0.0819 (0.1006) loss_rpn_box_reg: 0.0263 (0.0623) time: 1.5037 data: 0.2171 max mem: 9268 Epoch: [0] [470/581] eta: 0:01:42 lr: 0.008123 loss: 0.6012 (0.4700) loss_classifier: 0.2546 (0.1857) loss_box_reg: 0.3017 (0.1231) loss_objectness: 0.0583 (0.0996) loss_rpn_box_reg: 0.0263 (0.0616) time: 1.5048 data: 0.2191 max mem: 9268 Epoch: [0] [480/581] eta: 0:01:34 lr: 0.008295 loss: 0.5096 (0.4708) loss_classifier: 0.1917 (0.1856) loss_box_reg: 0.2443 (0.1261) loss_objectness: 0.0366 (0.0983) loss_rpn_box_reg: 0.0219 (0.0608) time: 1.4995 data: 0.2180 max mem: 9268 Epoch: [0] [490/581] eta: 0:01:26 lr: 0.008467 loss: 0.5060 (0.4704) loss_classifier: 0.1679 (0.1851) loss_box_reg: 0.2498 (0.1283) loss_objectness: 0.0305 (0.0969) loss_rpn_box_reg: 0.0192 (0.0600) time: 1.5060 data: 0.2204 max mem: 9268 Epoch: [0] [500/581] eta: 0:01:17 lr: 0.008639 loss: 0.3778 (0.4688) loss_classifier: 0.1350 (0.1845) loss_box_reg: 0.1993 (0.1294) loss_objectness: 0.0282 (0.0956) loss_rpn_box_reg: 0.0182 (0.0593) time: 1.5151 data: 0.2215 max mem: 9268 Epoch: [0] [510/581] eta: 0:01:08 lr: 0.008812 loss: 0.4375 (0.4712) loss_classifier: 0.1651 (0.1865) loss_box_reg: 0.1535 (0.1299) loss_objectness: 0.0357 (0.0957) loss_rpn_box_reg: 0.0172 (0.0591) time: 1.5165 data: 0.2255 max mem: 9268 Epoch: [0] [520/581] eta: 0:00:59 lr: 0.008984 loss: 0.5171 (0.4715) loss_classifier: 0.2410 (0.1868) loss_box_reg: 0.1371 (0.1303) loss_objectness: 0.0660 (0.0952) loss_rpn_box_reg: 0.0186 (0.0593) time: 1.5279 data: 0.2338 max mem: 9268 Epoch: [0] [530/581] eta: 0:00:50 lr: 0.009156 loss: 0.4152 (0.4705) loss_classifier: 0.1749 (0.1862) loss_box_reg: 0.1533 (0.1312) loss_objectness: 0.0560 (0.0945) loss_rpn_box_reg: 0.0123 (0.0586) time: 1.5319 data: 0.2355 max mem: 9268 Epoch: [0] [540/581] eta: 0:00:41 lr: 0.009328 loss: 0.3945 (0.4687) loss_classifier: 0.1424 (0.1851) loss_box_reg: 0.1940 (0.1323) loss_objectness: 0.0281 (0.0935) loss_rpn_box_reg: 0.0110 (0.0579) time: 1.5247 data: 0.2312 max mem: 9268 Epoch: [0] [550/581] eta: 0:00:31 lr: 0.009501 loss: 0.3268 (0.4664) loss_classifier: 0.0915 (0.1833) loss_box_reg: 0.1531 (0.1322) loss_objectness: 0.0423 (0.0928) loss_rpn_box_reg: 0.0199 (0.0582) time: 1.5247 data: 0.2297 max mem: 9268 Epoch: [0] [560/581] eta: 0:00:21 lr: 0.009673 loss: 0.3885 (0.4672) loss_classifier: 0.1032 (0.1833) loss_box_reg: 0.1277 (0.1327) loss_objectness: 0.0518 (0.0936) loss_rpn_box_reg: 0.0199 (0.0576) time: 1.5284 data: 0.2291 max mem: 9268 Epoch: [0] [570/581] eta: 0:00:11 lr: 0.009845 loss: 0.4448 (0.4660) loss_classifier: 0.1628 (0.1828) loss_box_reg: 0.1553 (0.1333) loss_objectness: 0.0547 (0.0929) loss_rpn_box_reg: 0.0097 (0.0570) time: 1.5305 data: 0.2303 max mem: 9268 Epoch: [0] [580/581] eta: 0:00:01 lr: 0.010000 loss: 0.3470 (0.4634) loss_classifier: 0.1260 (0.1818) loss_box_reg: 0.1548 (0.1338) loss_objectness: 0.0200 (0.0916) loss_rpn_box_reg: 0.0037 (0.0562) time: 1.4635 data: 0.2236 max mem: 9268 Epoch: [0] Total time: 0:10:02 (1.0368 s / it) mkdir: ./code/checkpoints/ finish upload ./code/checkpoints/model_0.pth->./data/training/model_0.pth Epoch: [1] [ 0/581] eta: 0:13:33 lr: 0.010000 loss: 0.6443 (0.6443) loss_classifier: 0.3404 (0.3404) loss_box_reg: 0.0727 (0.0727) loss_objectness: 0.1873 (0.1873) loss_rpn_box_reg: 0.0438 (0.0438) time: 1.4005 data: 0.5803 max mem: 9268 Epoch: [1] [ 10/581] eta: 0:08:14 lr: 0.010000 loss: 0.3522 (0.4644) loss_classifier: 0.1528 (0.1624) loss_box_reg: 0.0605 (0.0616) loss_objectness: 0.1210 (0.1747) loss_rpn_box_reg: 0.0377 (0.0657) time: 0.8662 data: 0.0787 max mem: 9268 Epoch: [1] [ 20/581] eta: 0:07:51 lr: 0.010000 loss: 0.3545 (0.4479) loss_classifier: 0.1310 (0.1557) loss_box_reg: 0.0601 (0.0669) loss_objectness: 0.0860 (0.1389) loss_rpn_box_reg: 0.0953 (0.0865) time: 0.8134 data: 0.0281 max mem: 9268 Epoch: [1] [ 30/581] eta: 0:07:38 lr: 0.010000 loss: 0.2923 (0.3884) loss_classifier: 0.0968 (0.1333) loss_box_reg: 0.0637 (0.0655) loss_objectness: 0.0643 (0.1122) loss_rpn_box_reg: 0.0637 (0.0773) time: 0.8126 data: 0.0279 max mem: 9268 Epoch: [1] [ 40/581] eta: 0:07:27 lr: 0.010000 loss: 0.2923 (0.3864) loss_classifier: 0.1011 (0.1331) loss_box_reg: 0.0749 (0.0752) loss_objectness: 0.0582 (0.1007) loss_rpn_box_reg: 0.0626 (0.0774) time: 0.8113 data: 0.0281 max mem: 9268 Epoch: [1] [ 50/581] eta: 0:07:16 lr: 0.010000 loss: 0.3579 (0.3803) loss_classifier: 0.1240 (0.1296) loss_box_reg: 0.1126 (0.0815) loss_objectness: 0.0517 (0.0898) loss_rpn_box_reg: 0.0655 (0.0795) time: 0.8094 data: 0.0273 max mem: 9268 Epoch: [1] [ 60/581] eta: 0:07:07 lr: 0.010000 loss: 0.2635 (0.3567) loss_classifier: 0.0961 (0.1210) loss_box_reg: 0.0916 (0.0819) loss_objectness: 0.0373 (0.0805) loss_rpn_box_reg: 0.0432 (0.0732) time: 0.8060 data: 0.0264 max mem: 9268 ignore small bbox < 10 2020-01-14_15_35_18_680.jpg ignore small bbox < 10 2020-01-14_15_35_28_206.jpg ignore small bbox < 10 2020-01-14_15_35_59_180.jpg ignore small bbox < 10 2020-01-14_15_35_59_180.jpg Epoch: [1] [ 70/581] eta: 0:06:57 lr: 0.010000 loss: 0.2284 (0.3550) loss_classifier: 0.0880 (0.1195) loss_box_reg: 0.0877 (0.0837) loss_objectness: 0.0358 (0.0765) loss_rpn_box_reg: 0.0429 (0.0753) time: 0.8045 data: 0.0261 max mem: 9268 Epoch: [1] [ 80/581] eta: 0:06:49 lr: 0.010000 loss: 0.2862 (0.3438) loss_classifier: 0.1102 (0.1163) loss_box_reg: 0.0877 (0.0837) loss_objectness: 0.0338 (0.0713) loss_rpn_box_reg: 0.0538 (0.0724) time: 0.8061 data: 0.0260 max mem: 9268 Epoch: [1] [ 90/581] eta: 0:06:40 lr: 0.010000 loss: 0.2428 (0.3332) loss_classifier: 0.0889 (0.1138) loss_box_reg: 0.0874 (0.0849) loss_objectness: 0.0283 (0.0662) loss_rpn_box_reg: 0.0381 (0.0683) time: 0.8070 data: 0.0264 max mem: 9268 Epoch: [1] [100/581] eta: 0:06:31 lr: 0.010000 loss: 0.2306 (0.3250) loss_classifier: 0.0804 (0.1112) loss_box_reg: 0.0742 (0.0845) loss_objectness: 0.0239 (0.0627) loss_rpn_box_reg: 0.0363 (0.0666) time: 0.8049 data: 0.0263 max mem: 9268 Epoch: [1] [110/581] eta: 0:06:23 lr: 0.010000 loss: 0.2585 (0.3211) loss_classifier: 0.0866 (0.1103) loss_box_reg: 0.0931 (0.0863) loss_objectness: 0.0239 (0.0591) loss_rpn_box_reg: 0.0460 (0.0655) time: 0.8044 data: 0.0263 max mem: 9268 Epoch: [1] [120/581] eta: 0:06:14 lr: 0.010000 loss: 0.2743 (0.3184) loss_classifier: 0.0911 (0.1089) loss_box_reg: 0.1075 (0.0888) loss_objectness: 0.0194 (0.0565) loss_rpn_box_reg: 0.0460 (0.0641) time: 0.8050 data: 0.0269 max mem: 9268 Epoch: [1] [130/581] eta: 0:06:06 lr: 0.010000 loss: 0.2798 (0.3161) loss_classifier: 0.0830 (0.1069) loss_box_reg: 0.0996 (0.0896) loss_objectness: 0.0211 (0.0550) loss_rpn_box_reg: 0.0572 (0.0646) time: 0.8048 data: 0.0269 max mem: 9268 Epoch: [1] [140/581] eta: 0:05:58 lr: 0.010000 loss: 0.2631 (0.3144) loss_classifier: 0.0817 (0.1057) loss_box_reg: 0.0964 (0.0916) loss_objectness: 0.0253 (0.0533) loss_rpn_box_reg: 0.0479 (0.0638) time: 0.8101 data: 0.0277 max mem: 9268 Epoch: [1] [150/581] eta: 0:05:54 lr: 0.010000 loss: 0.2685 (0.3158) loss_classifier: 0.0852 (0.1056) loss_box_reg: 0.0964 (0.0923) loss_objectness: 0.0332 (0.0530) loss_rpn_box_reg: 0.0526 (0.0649) time: 0.8954 data: 0.0478 max mem: 9268 Epoch: [1] [160/581] eta: 0:05:50 lr: 0.010000 loss: 0.3625 (0.3195) loss_classifier: 0.0837 (0.1046) loss_box_reg: 0.0788 (0.0930) loss_objectness: 0.0395 (0.0532) loss_rpn_box_reg: 0.0864 (0.0687) time: 0.9716 data: 0.0671 max mem: 9268 Epoch: [1] [170/581] eta: 0:05:45 lr: 0.010000 loss: 0.3283 (0.3204) loss_classifier: 0.0998 (0.1045) loss_box_reg: 0.1127 (0.0949) loss_objectness: 0.0366 (0.0524) loss_rpn_box_reg: 0.0851 (0.0687) time: 0.9635 data: 0.0676 max mem: 9268 Epoch: [1] [180/581] eta: 0:05:38 lr: 0.010000 loss: 0.2690 (0.3164) loss_classifier: 0.0798 (0.1027) loss_box_reg: 0.1079 (0.0951) loss_objectness: 0.0326 (0.0510) loss_rpn_box_reg: 0.0524 (0.0675) time: 0.9433 data: 0.0675 max mem: 9268 Epoch: [1] [190/581] eta: 0:05:32 lr: 0.010000 loss: 0.2349 (0.3114) loss_classifier: 0.0721 (0.1008) loss_box_reg: 0.1009 (0.0956) loss_objectness: 0.0175 (0.0494) loss_rpn_box_reg: 0.0293 (0.0656) time: 0.9322 data: 0.0678 max mem: 9268 Epoch: [1] [200/581] eta: 0:05:24 lr: 0.010000 loss: 0.2197 (0.3078) loss_classifier: 0.0636 (0.0993) loss_box_reg: 0.1009 (0.0961) loss_objectness: 0.0149 (0.0483) loss_rpn_box_reg: 0.0177 (0.0641) time: 0.9235 data: 0.0688 max mem: 9268 Epoch: [1] [210/581] eta: 0:05:17 lr: 0.010000 loss: 0.2564 (0.3077) loss_classifier: 0.0717 (0.0987) loss_box_reg: 0.1009 (0.0961) loss_objectness: 0.0261 (0.0477) loss_rpn_box_reg: 0.0363 (0.0652) time: 0.9060 data: 0.0683 max mem: 9268 Epoch: [1] [220/581] eta: 0:05:09 lr: 0.010000 loss: 0.2774 (0.3074) loss_classifier: 0.0789 (0.0976) loss_box_reg: 0.0916 (0.0956) loss_objectness: 0.0356 (0.0483) loss_rpn_box_reg: 0.0573 (0.0658) time: 0.9095 data: 0.0676 max mem: 9268 Epoch: [1] [230/581] eta: 0:05:01 lr: 0.010000 loss: 0.2888 (0.3082) loss_classifier: 0.0857 (0.0974) loss_box_reg: 0.0973 (0.0962) loss_objectness: 0.0450 (0.0487) loss_rpn_box_reg: 0.0505 (0.0659) time: 0.9066 data: 0.0678 max mem: 9268 Epoch: [1] [240/581] eta: 0:04:53 lr: 0.010000 loss: 0.2657 (0.3063) loss_classifier: 0.0807 (0.0969) loss_box_reg: 0.1113 (0.0969) loss_objectness: 0.0394 (0.0482) loss_rpn_box_reg: 0.0327 (0.0644) time: 0.8989 data: 0.0687 max mem: 9268 Epoch: [1] [250/581] eta: 0:04:45 lr: 0.010000 loss: 0.2414 (0.3035) loss_classifier: 0.0765 (0.0964) loss_box_reg: 0.1096 (0.0970) loss_objectness: 0.0277 (0.0472) loss_rpn_box_reg: 0.0218 (0.0628) time: 0.9055 data: 0.0681 max mem: 9268 Epoch: [1] [260/581] eta: 0:04:37 lr: 0.010000 loss: 0.1967 (0.2990) loss_classifier: 0.0681 (0.0951) loss_box_reg: 0.0954 (0.0972) loss_objectness: 0.0143 (0.0458) loss_rpn_box_reg: 0.0138 (0.0609) time: 0.9042 data: 0.0674 max mem: 9268 Epoch: [1] [270/581] eta: 0:04:29 lr: 0.010000 loss: 0.1922 (0.2962) loss_classifier: 0.0617 (0.0942) loss_box_reg: 0.0954 (0.0975) loss_objectness: 0.0111 (0.0449) loss_rpn_box_reg: 0.0135 (0.0595) time: 0.9019 data: 0.0679 max mem: 9268 Epoch: [1] [280/581] eta: 0:04:20 lr: 0.010000 loss: 0.2217 (0.2947) loss_classifier: 0.0736 (0.0940) loss_box_reg: 0.1016 (0.0982) loss_objectness: 0.0169 (0.0440) loss_rpn_box_reg: 0.0183 (0.0585) time: 0.8953 data: 0.0672 max mem: 9268 Epoch: [1] [290/581] eta: 0:04:12 lr: 0.010000 loss: 0.2401 (0.2927) loss_classifier: 0.0694 (0.0931) loss_box_reg: 0.1053 (0.0984) loss_objectness: 0.0169 (0.0431) loss_rpn_box_reg: 0.0366 (0.0581) time: 0.8824 data: 0.0655 max mem: 9268 Epoch: [1] [300/581] eta: 0:04:03 lr: 0.010000 loss: 0.2109 (0.2895) loss_classifier: 0.0601 (0.0919) loss_box_reg: 0.0942 (0.0983) loss_objectness: 0.0095 (0.0420) loss_rpn_box_reg: 0.0303 (0.0572) time: 0.8738 data: 0.0652 max mem: 9268 Epoch: [1] [310/581] eta: 0:03:54 lr: 0.010000 loss: 0.2141 (0.2902) loss_classifier: 0.0703 (0.0916) loss_box_reg: 0.0986 (0.0986) loss_objectness: 0.0133 (0.0416) loss_rpn_box_reg: 0.0314 (0.0584) time: 0.8666 data: 0.0645 max mem: 9268 Epoch: [1] [320/581] eta: 0:03:46 lr: 0.010000 loss: 0.2713 (0.2906) loss_classifier: 0.0708 (0.0909) loss_box_reg: 0.0986 (0.0986) loss_objectness: 0.0230 (0.0410) loss_rpn_box_reg: 0.0660 (0.0600) time: 0.8691 data: 0.0655 max mem: 9268 Epoch: [1] [330/581] eta: 0:03:37 lr: 0.010000 loss: 0.2713 (0.2903) loss_classifier: 0.0685 (0.0907) loss_box_reg: 0.0868 (0.0987) loss_objectness: 0.0235 (0.0407) loss_rpn_box_reg: 0.0675 (0.0602) time: 0.8767 data: 0.0698 max mem: 9268 Epoch: [1] [340/581] eta: 0:03:29 lr: 0.010000 loss: 0.2550 (0.2891) loss_classifier: 0.0812 (0.0906) loss_box_reg: 0.1018 (0.0988) loss_objectness: 0.0229 (0.0403) loss_rpn_box_reg: 0.0333 (0.0594) time: 0.8783 data: 0.0717 max mem: 9268 Epoch: [1] [350/581] eta: 0:03:20 lr: 0.010000 loss: 0.2457 (0.2899) loss_classifier: 0.0896 (0.0910) loss_box_reg: 0.1069 (0.0995) loss_objectness: 0.0214 (0.0405) loss_rpn_box_reg: 0.0240 (0.0590) time: 0.8628 data: 0.0665 max mem: 9268 Epoch: [1] [360/581] eta: 0:03:11 lr: 0.010000 loss: 0.2457 (0.2888) loss_classifier: 0.0851 (0.0908) loss_box_reg: 0.1070 (0.0997) loss_objectness: 0.0231 (0.0400) loss_rpn_box_reg: 0.0240 (0.0583) time: 0.8501 data: 0.0618 max mem: 9268 Epoch: [1] [370/581] eta: 0:03:02 lr: 0.010000 loss: 0.2535 (0.2884) loss_classifier: 0.0702 (0.0904) loss_box_reg: 0.0995 (0.0999) loss_objectness: 0.0231 (0.0398) loss_rpn_box_reg: 0.0368 (0.0582) time: 0.8498 data: 0.0626 max mem: 9268 Epoch: [1] [380/581] eta: 0:02:53 lr: 0.010000 loss: 0.2535 (0.2873) loss_classifier: 0.0705 (0.0902) loss_box_reg: 0.1048 (0.1002) loss_objectness: 0.0214 (0.0393) loss_rpn_box_reg: 0.0439 (0.0576) time: 0.8408 data: 0.0617 max mem: 9268 Epoch: [1] [390/581] eta: 0:02:45 lr: 0.010000 loss: 0.2247 (0.2861) loss_classifier: 0.0699 (0.0899) loss_box_reg: 0.1014 (0.1004) loss_objectness: 0.0157 (0.0387) loss_rpn_box_reg: 0.0244 (0.0570) time: 0.8444 data: 0.0623 max mem: 9268 Epoch: [1] [400/581] eta: 0:02:36 lr: 0.010000 loss: 0.2173 (0.2870) loss_classifier: 0.0691 (0.0904) loss_box_reg: 0.1014 (0.1015) loss_objectness: 0.0168 (0.0383) loss_rpn_box_reg: 0.0397 (0.0569) time: 0.8530 data: 0.0636 max mem: 9268 Epoch: [1] [410/581] eta: 0:02:27 lr: 0.010000 loss: 0.3234 (0.2890) loss_classifier: 0.1057 (0.0909) loss_box_reg: 0.1389 (0.1023) loss_objectness: 0.0258 (0.0381) loss_rpn_box_reg: 0.0687 (0.0576) time: 0.8518 data: 0.0629 max mem: 9268 Epoch: [1] [420/581] eta: 0:02:19 lr: 0.010000 loss: 0.3741 (0.2903) loss_classifier: 0.0933 (0.0907) loss_box_reg: 0.1322 (0.1028) loss_objectness: 0.0340 (0.0386) loss_rpn_box_reg: 0.0733 (0.0582) time: 0.8531 data: 0.0636 max mem: 9268 Epoch: [1] [430/581] eta: 0:02:12 lr: 0.010000 loss: 0.3426 (0.2916) loss_classifier: 0.0961 (0.0923) loss_box_reg: 0.1161 (0.1031) loss_objectness: 0.0383 (0.0386) loss_rpn_box_reg: 0.0422 (0.0576) time: 1.1091 data: 0.1714 max mem: 9268 Epoch: [1] [440/581] eta: 0:02:05 lr: 0.010000 loss: 0.4170 (0.2982) loss_classifier: 0.2368 (0.0967) loss_box_reg: 0.1587 (0.1061) loss_objectness: 0.0297 (0.0385) loss_rpn_box_reg: 0.0149 (0.0569) time: 1.4198 data: 0.2416 max mem: 9268 ignore small bbox < 10 2021-05-16-17-01-48.jpg Epoch: [1] [450/581] eta: 0:01:58 lr: 0.010000 loss: 0.5809 (0.3038) loss_classifier: 0.2574 (0.0993) loss_box_reg: 0.2349 (0.1093) loss_objectness: 0.0327 (0.0387) loss_rpn_box_reg: 0.0176 (0.0565) time: 1.4820 data: 0.2079 max mem: 9268 Epoch: [1] [460/581] eta: 0:01:50 lr: 0.010000 loss: 0.5490 (0.3089) loss_classifier: 0.2095 (0.1014) loss_box_reg: 0.2681 (0.1128) loss_objectness: 0.0389 (0.0387) loss_rpn_box_reg: 0.0237 (0.0559) time: 1.4890 data: 0.2132 max mem: 9268 Epoch: [1] [470/581] eta: 0:01:42 lr: 0.010000 loss: 0.4407 (0.3112) loss_classifier: 0.1586 (0.1026) loss_box_reg: 0.2259 (0.1148) loss_objectness: 0.0310 (0.0386) loss_rpn_box_reg: 0.0223 (0.0553) time: 1.4900 data: 0.2186 max mem: 9268 Epoch: [1] [480/581] eta: 0:01:34 lr: 0.010000 loss: 0.4024 (0.3131) loss_classifier: 0.1430 (0.1034) loss_box_reg: 0.2070 (0.1169) loss_objectness: 0.0292 (0.0383) loss_rpn_box_reg: 0.0192 (0.0546) time: 1.4975 data: 0.2195 max mem: 9268 Epoch: [1] [490/581] eta: 0:01:26 lr: 0.010000 loss: 0.4024 (0.3147) loss_classifier: 0.1268 (0.1040) loss_box_reg: 0.2243 (0.1189) loss_objectness: 0.0222 (0.0379) loss_rpn_box_reg: 0.0178 (0.0538) time: 1.5010 data: 0.2168 max mem: 9268 Epoch: [1] [500/581] eta: 0:01:17 lr: 0.010000 loss: 0.3164 (0.3147) loss_classifier: 0.1114 (0.1043) loss_box_reg: 0.1677 (0.1197) loss_objectness: 0.0179 (0.0376) loss_rpn_box_reg: 0.0149 (0.0531) time: 1.5034 data: 0.2182 max mem: 9268 Epoch: [1] [510/581] eta: 0:01:09 lr: 0.010000 loss: 0.3600 (0.3181) loss_classifier: 0.1273 (0.1070) loss_box_reg: 0.1602 (0.1206) loss_objectness: 0.0209 (0.0378) loss_rpn_box_reg: 0.0135 (0.0528) time: 1.5124 data: 0.2269 max mem: 9268 Epoch: [1] [520/581] eta: 0:00:59 lr: 0.010000 loss: 0.4151 (0.3200) loss_classifier: 0.2156 (0.1084) loss_box_reg: 0.1488 (0.1211) loss_objectness: 0.0334 (0.0379) loss_rpn_box_reg: 0.0176 (0.0527) time: 1.5179 data: 0.2299 max mem: 9268 Epoch: [1] [530/581] eta: 0:00:50 lr: 0.010000 loss: 0.2731 (0.3189) loss_classifier: 0.0928 (0.1077) loss_box_reg: 0.1462 (0.1215) loss_objectness: 0.0273 (0.0377) loss_rpn_box_reg: 0.0081 (0.0519) time: 1.5230 data: 0.2286 max mem: 9268 Epoch: [1] [540/581] eta: 0:00:41 lr: 0.010000 loss: 0.2554 (0.3182) loss_classifier: 0.0752 (0.1073) loss_box_reg: 0.1462 (0.1219) loss_objectness: 0.0203 (0.0375) loss_rpn_box_reg: 0.0071 (0.0515) time: 1.5244 data: 0.2302 max mem: 9268 Epoch: [1] [550/581] eta: 0:00:31 lr: 0.010000 loss: 0.2724 (0.3179) loss_classifier: 0.0712 (0.1065) loss_box_reg: 0.1069 (0.1214) loss_objectness: 0.0281 (0.0380) loss_rpn_box_reg: 0.0174 (0.0519) time: 1.5213 data: 0.2313 max mem: 9268 Epoch: [1] [560/581] eta: 0:00:21 lr: 0.010000 loss: 0.2812 (0.3182) loss_classifier: 0.0707 (0.1065) loss_box_reg: 0.0874 (0.1208) loss_objectness: 0.0668 (0.0391) loss_rpn_box_reg: 0.0216 (0.0517) time: 1.5200 data: 0.2313 max mem: 9268 Epoch: [1] [570/581] eta: 0:00:11 lr: 0.010000 loss: 0.3402 (0.3182) loss_classifier: 0.1095 (0.1068) loss_box_reg: 0.1009 (0.1210) loss_objectness: 0.0355 (0.0392) loss_rpn_box_reg: 0.0123 (0.0513) time: 1.5203 data: 0.2294 max mem: 9268 Epoch: [1] [580/581] eta: 0:00:01 lr: 0.010000 loss: 0.2308 (0.3167) loss_classifier: 0.1049 (0.1067) loss_box_reg: 0.1009 (0.1207) loss_objectness: 0.0227 (0.0388) loss_rpn_box_reg: 0.0042 (0.0505) time: 1.4580 data: 0.2216 max mem: 9268 Epoch: [1] Total time: 0:10:02 (1.0371 s / it) finish upload ./code/checkpoints/model_1.pth->./data/training/model_1.pth upload model_1.pth -> ./submission/model/model_best.pth
import json
import inspect
import os
import sys
root_path = os.path.abspath(inspect.getsourcefile(lambda:0))
root_path = '/'.join(root_path.split('/')[:-2])
sys.path.append('./code')
import customize_service as cs
imageService = cs.ImageClassificationService('model_best.pth', './submission/model/model_best.pth')
# 可以把其他预测的图片放在src/image文件夹下,替换下面的文件名称,进行预测
data = imageService.inference("./image/火花塞.jpg")
print(data)
Using GPU for inference model already preprocess time: 264.737606048584ms infer time: 125.19049644470215ms postprocess time: 0.3173351287841797ms latency: 390.2454376220703ms {'result': [{'boxes': [[549.6098022460938, 1353.4212646484375, 856.999267578125, 1626.158203125], [3011.467529296875, 965.0498046875, 3421.206787109375, 1304.65625], [2989.284912109375, 968.4557495117188, 3422.8388671875, 1304.9481201171875], [576.8909301757812, 1340.2587890625, 877.2547607421875, 1652.6400146484375], [2945.8115234375, 964.2322387695312, 3421.817626953125, 1301.81884765625], [1777.4849853515625, 929.34130859375, 2139.784423828125, 1631.8582763671875], [2151.7578125, 1019.7630004882812, 2980.9716796875, 1444.9742431640625], [1126.210693359375, 1270.072998046875, 1245.9949951171875, 1381.199951171875], [2583.181640625, 988.2589721679688, 2990.323974609375, 1420.2467041015625], [3055.580322265625, 990.49560546875, 3369.37646484375, 1279.698974609375]], 'labels': [9, 10, 9, 10, 7, 10, 10, 8, 10, 8], 'scores': [0.8874596953392029, 0.8255313634872437, 0.20651447772979736, 0.181894451379776, 0.1192605122923851, 0.10301008820533752, 0.09060976654291153, 0.05289372429251671, 0.0503094345331192, 0.050185371190309525]}]}
/home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages/torchvision/ops/boxes.py:101: UserWarning: This overload of nonzero is deprecated: nonzero() Consider using one of the following signatures instead: nonzero(*, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.) keep = keep.nonzero().squeeze(1)
至此,本案例结束!
2021数字化转型创新应用大赛·创客赛道初赛竞赛数据集
43个月以前
名称 |
---|
评论0
2
2人已评价
请登录后评论