您对华为云开发者网站的整体评价?

非常不满意 非常满意

0

1

2

3

4

5

6

7

8

9

10

*您遇到了哪些问题?(最多选三项)
*您感到满意的原因是?(最多选三项)
*请针对您所遇到的问题给出具体的反馈
200/200
汽车零部件的表面缺陷识别
基于目标检测的方法,使用工业相机成像的数据,训练一个汽车零部件表面缺陷识别模型
    0 0 1528 94

案例内容介绍

随着人们生活水平的提高,我国的汽车消费量是世界上排在前列的国家之一。同样,汽车工业也是支持我国实体经济发展的关键产业,与汽车有关的各种产业也多种多样。汽车行业与我们每个人的人身安全息息有关。汽车零部件的质量是整车质量的基础,汽车零件的缺陷检测可以帮助提高汽车的安全性。然而目前人工目视检测的方式不仅存在效率低下,还可能由于人工疲劳造成缺陷零部件流入行业下流,造成潜在的安全风险。

本案例基于目标检测的方法,使用工业相机成像的数据,训练一个汽车零部件表面缺陷识别模型,可以检测出三种汽车零部件(轴承、火花塞和摇把)表面存在多种缺陷。

注意事项

  1. 本案例推荐使用AI框架:Pytorch-1.4.0;

  2. 本案例需使用 GPU 运行,请查看《ModelArts JupyterLab 硬件规格使用指南》了解切换硬件规格的方法;

  3. 如果您是第一次使用 JupyterLab,请查看《ModelArts JupyterLab使用指导》了解使用方法;

  4. 如果您在使用 JupyterLab 过程中碰到报错,请参考《ModelArts JupyterLab常见问题解决办法》尝试解决问题。

实验步骤

数据集说明

本数据来自工业相机成像。数据集由三种数据构成:轴承、火花塞和摇把。

轴承表面一共存在四种缺陷:

1、连接处缺陷:零件正面两种不同材质连接处出现错误,视为连接处缺陷

2、直角边缺陷:相对于合格零件来说,直角边出现缺口,视为直角边缺陷

3、空洞缺陷(连接处缺陷):零件正面两种不同材质连接处出现错误,视为连接处缺陷

4、毛刺:零件周围出现不规则凸起,视为毛刺

火花塞一共存在三种缺陷:

1、垂直度问题:瓷下面的接线螺母与火花塞本身的中心线不平行 发生弯曲

2、拔丝异常:螺纹丝纹不完整不顺滑或者遭到破坏

3、间距缺陷:侧电极与中心电极严格的技术要求一般是0.6到1.6毫米

摇把一共存在三种缺陷:

1、颜色缺陷:该零件正常表面为统一色,生产过程中表面出现其他颜色视为颜色缺陷

2、划痕缺陷:相对于合格的汽车塑料零件,摇把表面出现划痕,视为划痕缺陷

3、磨损缺陷:在汽车塑料零件表侧面及外侧部分出现磨损不平整,视为磨损缺陷

1.下载代码和数据集

import moxing as mox
import os

mox.file.copy_parallel('obs://obs-aigallery-zc/notebook/car-parts-detect/','./src')
root_path = './src'
os.chdir(root_path)
INFO:root:Using MoXing-v1.17.3-43fbf97f
INFO:root:Using OBS-Python-SDK-3.20.7

注:本案例采用汽车零部件表面缺陷识别数据集,详细数据集已经放入OBS桶中,路径为obs://obs-aigallery-zc/notebook/car-parts-detect/data。

2.安装依赖库

!cd ./code && pip install -r requirements.txt
Looking in indexes: http://repo.myhuaweicloud.com/repository/pypi/simple
Requirement already satisfied: torch==1.6.0 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from -r requirements.txt (line 1)) (1.6.0)
Requirement already satisfied: torchvision==0.7.0 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from -r requirements.txt (line 2)) (0.7.0)
Requirement already satisfied: pycocotools==2.0.2 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from -r requirements.txt (line 3)) (2.0.2)
Requirement already satisfied: matplotlib>=2.1.0 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from pycocotools==2.0.2->-r requirements.txt (line 3)) (3.4.3)
Requirement already satisfied: setuptools>=18.0 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from pycocotools==2.0.2->-r requirements.txt (line 3)) (52.0.0.post20210125)
Requirement already satisfied: cython>=0.27.3 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from pycocotools==2.0.2->-r requirements.txt (line 3)) (0.27.3)
Requirement already satisfied: numpy in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from torch==1.6.0->-r requirements.txt (line 1)) (1.17.0)
Requirement already satisfied: future in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from torch==1.6.0->-r requirements.txt (line 1)) (0.18.2)
Requirement already satisfied: pillow>=4.1.1 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from torchvision==0.7.0->-r requirements.txt (line 2)) (6.2.0)
Requirement already satisfied: cycler>=0.10 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from matplotlib>=2.1.0->pycocotools==2.0.2->-r requirements.txt (line 3)) (0.10.0)
Requirement already satisfied: pyparsing>=2.2.1 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from matplotlib>=2.1.0->pycocotools==2.0.2->-r requirements.txt (line 3)) (2.4.7)
Requirement already satisfied: python-dateutil>=2.7 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from matplotlib>=2.1.0->pycocotools==2.0.2->-r requirements.txt (line 3)) (2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from matplotlib>=2.1.0->pycocotools==2.0.2->-r requirements.txt (line 3)) (1.3.2)
Requirement already satisfied: six in /home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages (from cycler>=0.10->matplotlib>=2.1.0->pycocotools==2.0.2->-r requirements.txt (line 3)) (1.16.0)
WARNING: You are using pip version 21.0.1; however, version 21.1.3 is available.
You should consider upgrading via the '/home/ma-user/anaconda3/envs/PyTorch-1.4/bin/python -m pip install --upgrade pip' command.

3.开始训练(本步骤大概需要20分钟)

!python ./code/baseline_released.py \
--data_url ./data \
--train_url ./data/training/ \
--last_path ./submission/model/ \
--train-dir ./ckpt/ \
--ckpt-dir ./code/checkpoints/ \
--num-classes 10 \
--num-epochs 2 \
--batch-size 8
INFO:root:Using MoXing-v1.17.3-43fbf97f
INFO:root:Using OBS-Python-SDK-3.20.7
./data
2021hwsz-data-Annotations.zip  2021hwsz-data-Images.zip  training
./data
./data/training/
./submission/model/
/home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages/torchvision/ops/boxes.py:101: UserWarning: This overload of nonzero is deprecated:
	nonzero()
Consider using one of the following signatures instead:
	nonzero(*, bool as_tuple) (Triggered internally at  /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
  keep = keep.nonzero().squeeze(1)
Epoch: [0]  [  0/581]  eta: 0:15:37  lr: 0.000027  loss: 4.3435 (4.3435)  loss_classifier: 2.6420 (2.6420)  loss_box_reg: 0.0113 (0.0113)  loss_objectness: 1.6316 (1.6316)  loss_rpn_box_reg: 0.0586 (0.0586)  time: 1.6141  data: 0.5689  max mem: 8738
Epoch: [0]  [ 10/581]  eta: 0:08:25  lr: 0.000199  loss: 3.7142 (3.8453)  loss_classifier: 2.3811 (2.2007)  loss_box_reg: 0.0087 (0.0105)  loss_objectness: 1.1346 (1.5238)  loss_rpn_box_reg: 0.0586 (0.1103)  time: 0.8854  data: 0.0761  max mem: 9004
Epoch: [0]  [ 20/581]  eta: 0:07:55  lr: 0.000372  loss: 1.9897 (2.4596)  loss_classifier: 0.9709 (1.3206)  loss_box_reg: 0.0196 (0.0215)  loss_objectness: 0.6049 (1.0013)  loss_rpn_box_reg: 0.0946 (0.1162)  time: 0.8094  data: 0.0260  max mem: 9214
Epoch: [0]  [ 30/581]  eta: 0:07:40  lr: 0.000544  loss: 0.3589 (1.7705)  loss_classifier: 0.1026 (0.9193)  loss_box_reg: 0.0275 (0.0237)  loss_objectness: 0.1562 (0.7261)  loss_rpn_box_reg: 0.0740 (0.1015)  time: 0.8072  data: 0.0258  max mem: 9214
Epoch: [0]  [ 40/581]  eta: 0:07:27  lr: 0.000716  loss: 0.3433 (1.4644)  loss_classifier: 0.1101 (0.7483)  loss_box_reg: 0.0364 (0.0351)  loss_objectness: 0.1340 (0.5837)  loss_rpn_box_reg: 0.0646 (0.0973)  time: 0.8065  data: 0.0260  max mem: 9214
Epoch: [0]  [ 50/581]  eta: 0:07:16  lr: 0.000888  loss: 0.4946 (1.2727)  loss_classifier: 0.1655 (0.6376)  loss_box_reg: 0.0720 (0.0443)  loss_objectness: 0.1121 (0.4905)  loss_rpn_box_reg: 0.0756 (0.1002)  time: 0.8038  data: 0.0251  max mem: 9214
Epoch: [0]  [ 60/581]  eta: 0:07:06  lr: 0.001061  loss: 0.3955 (1.1218)  loss_classifier: 0.1592 (0.5564)  loss_box_reg: 0.0863 (0.0528)  loss_objectness: 0.0832 (0.4221)  loss_rpn_box_reg: 0.0427 (0.0906)  time: 0.8010  data: 0.0245  max mem: 9214
ignore small bbox < 10 2020-01-14_15_35_18_680.jpg
ignore small bbox < 10 2020-01-14_15_35_28_206.jpg
ignore small bbox < 10 2020-01-14_15_35_59_180.jpg
ignore small bbox < 10 2020-01-14_15_35_59_180.jpg
Epoch: [0]  [ 70/581]  eta: 0:06:57  lr: 0.001233  loss: 0.3567 (1.0225)  loss_classifier: 0.1348 (0.4986)  loss_box_reg: 0.0939 (0.0588)  loss_objectness: 0.0631 (0.3752)  loss_rpn_box_reg: 0.0422 (0.0898)  time: 0.7991  data: 0.0243  max mem: 9214
Epoch: [0]  [ 80/581]  eta: 0:06:48  lr: 0.001405  loss: 0.3457 (0.9366)  loss_classifier: 0.1381 (0.4546)  loss_box_reg: 0.0857 (0.0623)  loss_objectness: 0.0544 (0.3357)  loss_rpn_box_reg: 0.0461 (0.0840)  time: 0.8021  data: 0.0243  max mem: 9214
Epoch: [0]  [ 90/581]  eta: 0:06:39  lr: 0.001577  loss: 0.3125 (0.8667)  loss_classifier: 0.1333 (0.4188)  loss_box_reg: 0.0861 (0.0656)  loss_objectness: 0.0500 (0.3037)  loss_rpn_box_reg: 0.0381 (0.0787)  time: 0.8039  data: 0.0246  max mem: 9214
Epoch: [0]  [100/581]  eta: 0:06:30  lr: 0.001750  loss: 0.2927 (0.8116)  loss_classifier: 0.1201 (0.3893)  loss_box_reg: 0.0820 (0.0673)  loss_objectness: 0.0438 (0.2789)  loss_rpn_box_reg: 0.0378 (0.0761)  time: 0.8018  data: 0.0248  max mem: 9214
Epoch: [0]  [110/581]  eta: 0:06:22  lr: 0.001922  loss: 0.3272 (0.7696)  loss_classifier: 0.1209 (0.3665)  loss_box_reg: 0.1002 (0.0706)  loss_objectness: 0.0442 (0.2578)  loss_rpn_box_reg: 0.0499 (0.0747)  time: 0.8009  data: 0.0247  max mem: 9214
Epoch: [0]  [120/581]  eta: 0:06:13  lr: 0.002094  loss: 0.3272 (0.7363)  loss_classifier: 0.1290 (0.3475)  loss_box_reg: 0.1040 (0.0750)  loss_objectness: 0.0390 (0.2410)  loss_rpn_box_reg: 0.0499 (0.0729)  time: 0.8005  data: 0.0244  max mem: 9214
Epoch: [0]  [130/581]  eta: 0:06:05  lr: 0.002266  loss: 0.3754 (0.7087)  loss_classifier: 0.1245 (0.3309)  loss_box_reg: 0.1102 (0.0780)  loss_objectness: 0.0428 (0.2267)  loss_rpn_box_reg: 0.0625 (0.0731)  time: 0.8001  data: 0.0241  max mem: 9214
Epoch: [0]  [140/581]  eta: 0:05:57  lr: 0.002439  loss: 0.3424 (0.6851)  loss_classifier: 0.1249 (0.3170)  loss_box_reg: 0.1264 (0.0824)  loss_objectness: 0.0526 (0.2139)  loss_rpn_box_reg: 0.0449 (0.0718)  time: 0.8067  data: 0.0247  max mem: 9214
Epoch: [0]  [150/581]  eta: 0:05:53  lr: 0.002611  loss: 0.3424 (0.6685)  loss_classifier: 0.1249 (0.3052)  loss_box_reg: 0.1136 (0.0837)  loss_objectness: 0.0659 (0.2069)  loss_rpn_box_reg: 0.0449 (0.0728)  time: 0.8879  data: 0.0430  max mem: 9268
Epoch: [0]  [160/581]  eta: 0:05:48  lr: 0.002783  loss: 0.3990 (0.6557)  loss_classifier: 0.1165 (0.2939)  loss_box_reg: 0.1083 (0.0866)  loss_objectness: 0.0749 (0.1989)  loss_rpn_box_reg: 0.1080 (0.0764)  time: 0.9598  data: 0.0607  max mem: 9268
Epoch: [0]  [170/581]  eta: 0:05:43  lr: 0.002955  loss: 0.4238 (0.6429)  loss_classifier: 0.1399 (0.2862)  loss_box_reg: 0.1349 (0.0902)  loss_objectness: 0.0574 (0.1900)  loss_rpn_box_reg: 0.0888 (0.0764)  time: 0.9513  data: 0.0606  max mem: 9268
Epoch: [0]  [180/581]  eta: 0:05:36  lr: 0.003128  loss: 0.3991 (0.6284)  loss_classifier: 0.1437 (0.2780)  loss_box_reg: 0.1398 (0.0933)  loss_objectness: 0.0450 (0.1817)  loss_rpn_box_reg: 0.0633 (0.0754)  time: 0.9327  data: 0.0608  max mem: 9268
Epoch: [0]  [190/581]  eta: 0:05:30  lr: 0.003300  loss: 0.3767 (0.6148)  loss_classifier: 0.1175 (0.2691)  loss_box_reg: 0.1628 (0.0975)  loss_objectness: 0.0321 (0.1744)  loss_rpn_box_reg: 0.0364 (0.0738)  time: 0.9208  data: 0.0617  max mem: 9268
Epoch: [0]  [200/581]  eta: 0:05:22  lr: 0.003472  loss: 0.3087 (0.5998)  loss_classifier: 0.1064 (0.2607)  loss_box_reg: 0.1517 (0.0998)  loss_objectness: 0.0247 (0.1673)  loss_rpn_box_reg: 0.0189 (0.0720)  time: 0.9129  data: 0.0623  max mem: 9268
Epoch: [0]  [210/581]  eta: 0:05:15  lr: 0.003644  loss: 0.3108 (0.5904)  loss_classifier: 0.1017 (0.2539)  loss_box_reg: 0.1263 (0.1004)  loss_objectness: 0.0332 (0.1629)  loss_rpn_box_reg: 0.0427 (0.0732)  time: 0.9030  data: 0.0634  max mem: 9268
Epoch: [0]  [220/581]  eta: 0:05:07  lr: 0.003817  loss: 0.3217 (0.5785)  loss_classifier: 0.0964 (0.2465)  loss_box_reg: 0.0995 (0.1000)  loss_objectness: 0.0615 (0.1589)  loss_rpn_box_reg: 0.0556 (0.0732)  time: 0.9082  data: 0.0644  max mem: 9268
Epoch: [0]  [230/581]  eta: 0:04:59  lr: 0.003989  loss: 0.3350 (0.5711)  loss_classifier: 0.1045 (0.2411)  loss_box_reg: 0.0995 (0.1003)  loss_objectness: 0.0690 (0.1561)  loss_rpn_box_reg: 0.0556 (0.0736)  time: 0.9048  data: 0.0647  max mem: 9268
Epoch: [0]  [240/581]  eta: 0:04:51  lr: 0.004161  loss: 0.3350 (0.5594)  loss_classifier: 0.1077 (0.2350)  loss_box_reg: 0.1034 (0.1005)  loss_objectness: 0.0657 (0.1520)  loss_rpn_box_reg: 0.0427 (0.0719)  time: 0.8945  data: 0.0645  max mem: 9268
Epoch: [0]  [250/581]  eta: 0:04:44  lr: 0.004333  loss: 0.2663 (0.5486)  loss_classifier: 0.0975 (0.2302)  loss_box_reg: 0.1060 (0.1012)  loss_objectness: 0.0339 (0.1472)  loss_rpn_box_reg: 0.0223 (0.0701)  time: 0.8987  data: 0.0644  max mem: 9268
Epoch: [0]  [260/581]  eta: 0:04:35  lr: 0.004505  loss: 0.2323 (0.5360)  loss_classifier: 0.0816 (0.2244)  loss_box_reg: 0.1115 (0.1014)  loss_objectness: 0.0228 (0.1422)  loss_rpn_box_reg: 0.0169 (0.0679)  time: 0.9000  data: 0.0641  max mem: 9268
Epoch: [0]  [270/581]  eta: 0:04:27  lr: 0.004678  loss: 0.2115 (0.5263)  loss_classifier: 0.0751 (0.2195)  loss_box_reg: 0.1048 (0.1022)  loss_objectness: 0.0162 (0.1380)  loss_rpn_box_reg: 0.0169 (0.0665)  time: 0.8980  data: 0.0647  max mem: 9268
Epoch: [0]  [280/581]  eta: 0:04:19  lr: 0.004850  loss: 0.2675 (0.5184)  loss_classifier: 0.0939 (0.2155)  loss_box_reg: 0.1329 (0.1034)  loss_objectness: 0.0233 (0.1342)  loss_rpn_box_reg: 0.0214 (0.0653)  time: 0.8937  data: 0.0649  max mem: 9268
Epoch: [0]  [290/581]  eta: 0:04:10  lr: 0.005022  loss: 0.2675 (0.5100)  loss_classifier: 0.0829 (0.2108)  loss_box_reg: 0.1082 (0.1039)  loss_objectness: 0.0233 (0.1304)  loss_rpn_box_reg: 0.0434 (0.0649)  time: 0.8812  data: 0.0642  max mem: 9268
Epoch: [0]  [300/581]  eta: 0:04:02  lr: 0.005194  loss: 0.2382 (0.5000)  loss_classifier: 0.0700 (0.2058)  loss_box_reg: 0.0987 (0.1037)  loss_objectness: 0.0174 (0.1267)  loss_rpn_box_reg: 0.0340 (0.0639)  time: 0.8723  data: 0.0667  max mem: 9268
Epoch: [0]  [310/581]  eta: 0:03:53  lr: 0.005367  loss: 0.2255 (0.4946)  loss_classifier: 0.0682 (0.2018)  loss_box_reg: 0.0994 (0.1039)  loss_objectness: 0.0197 (0.1237)  loss_rpn_box_reg: 0.0318 (0.0651)  time: 0.8676  data: 0.0661  max mem: 9268
Epoch: [0]  [320/581]  eta: 0:03:45  lr: 0.005539  loss: 0.2730 (0.4896)  loss_classifier: 0.0761 (0.1980)  loss_box_reg: 0.1002 (0.1040)  loss_objectness: 0.0246 (0.1207)  loss_rpn_box_reg: 0.0727 (0.0668)  time: 0.8700  data: 0.0649  max mem: 9268
Epoch: [0]  [330/581]  eta: 0:03:36  lr: 0.005711  loss: 0.3171 (0.4846)  loss_classifier: 0.0829 (0.1951)  loss_box_reg: 0.1086 (0.1046)  loss_objectness: 0.0281 (0.1182)  loss_rpn_box_reg: 0.0692 (0.0667)  time: 0.8805  data: 0.0691  max mem: 9268
Epoch: [0]  [340/581]  eta: 0:03:28  lr: 0.005883  loss: 0.2944 (0.4784)  loss_classifier: 0.0949 (0.1921)  loss_box_reg: 0.1086 (0.1048)  loss_objectness: 0.0295 (0.1157)  loss_rpn_box_reg: 0.0344 (0.0657)  time: 0.8840  data: 0.0727  max mem: 9268
Epoch: [0]  [350/581]  eta: 0:03:19  lr: 0.006056  loss: 0.2696 (0.4752)  loss_classifier: 0.1029 (0.1900)  loss_box_reg: 0.1167 (0.1056)  loss_objectness: 0.0275 (0.1143)  loss_rpn_box_reg: 0.0229 (0.0653)  time: 0.8673  data: 0.0673  max mem: 9268
Epoch: [0]  [360/581]  eta: 0:03:10  lr: 0.006228  loss: 0.2696 (0.4700)  loss_classifier: 0.1029 (0.1874)  loss_box_reg: 0.1167 (0.1059)  loss_objectness: 0.0302 (0.1122)  loss_rpn_box_reg: 0.0230 (0.0645)  time: 0.8509  data: 0.0614  max mem: 9268
Epoch: [0]  [370/581]  eta: 0:03:02  lr: 0.006400  loss: 0.2556 (0.4651)  loss_classifier: 0.0789 (0.1844)  loss_box_reg: 0.0995 (0.1058)  loss_objectness: 0.0302 (0.1102)  loss_rpn_box_reg: 0.0479 (0.0647)  time: 0.8469  data: 0.0614  max mem: 9268
Epoch: [0]  [380/581]  eta: 0:02:53  lr: 0.006572  loss: 0.2556 (0.4596)  loss_classifier: 0.0789 (0.1818)  loss_box_reg: 0.0991 (0.1058)  loss_objectness: 0.0279 (0.1080)  loss_rpn_box_reg: 0.0479 (0.0640)  time: 0.8374  data: 0.0601  max mem: 9268
Epoch: [0]  [390/581]  eta: 0:02:44  lr: 0.006745  loss: 0.2351 (0.4545)  loss_classifier: 0.0804 (0.1794)  loss_box_reg: 0.0981 (0.1059)  loss_objectness: 0.0194 (0.1058)  loss_rpn_box_reg: 0.0284 (0.0634)  time: 0.8408  data: 0.0603  max mem: 9268
Epoch: [0]  [400/581]  eta: 0:02:35  lr: 0.006917  loss: 0.2559 (0.4524)  loss_classifier: 0.0854 (0.1779)  loss_box_reg: 0.1202 (0.1071)  loss_objectness: 0.0194 (0.1040)  loss_rpn_box_reg: 0.0385 (0.0634)  time: 0.8503  data: 0.0613  max mem: 9268
Epoch: [0]  [410/581]  eta: 0:02:27  lr: 0.007089  loss: 0.3771 (0.4505)  loss_classifier: 0.1157 (0.1761)  loss_box_reg: 0.1322 (0.1075)  loss_objectness: 0.0337 (0.1027)  loss_rpn_box_reg: 0.0765 (0.0642)  time: 0.8487  data: 0.0609  max mem: 9268
Epoch: [0]  [420/581]  eta: 0:02:18  lr: 0.007261  loss: 0.3816 (0.4484)  loss_classifier: 0.0907 (0.1740)  loss_box_reg: 0.1172 (0.1078)  loss_objectness: 0.0452 (0.1019)  loss_rpn_box_reg: 0.0837 (0.0648)  time: 0.8507  data: 0.0611  max mem: 9268
Epoch: [0]  [430/581]  eta: 0:02:11  lr: 0.007434  loss: 0.3826 (0.4475)  loss_classifier: 0.0930 (0.1741)  loss_box_reg: 0.1118 (0.1078)  loss_objectness: 0.0586 (0.1014)  loss_rpn_box_reg: 0.0416 (0.0641)  time: 1.1058  data: 0.1647  max mem: 9268
Epoch: [0]  [440/581]  eta: 0:02:05  lr: 0.007606  loss: 0.4979 (0.4526)  loss_classifier: 0.2747 (0.1776)  loss_box_reg: 0.1505 (0.1109)  loss_objectness: 0.0579 (0.1007)  loss_rpn_box_reg: 0.0179 (0.0635)  time: 1.4237  data: 0.2378  max mem: 9268
ignore small bbox < 10 2021-05-16-17-01-48.jpg
Epoch: [0]  [450/581]  eta: 0:01:57  lr: 0.007778  loss: 0.6634 (0.4596)  loss_classifier: 0.3065 (0.1810)  loss_box_reg: 0.2350 (0.1147)  loss_objectness: 0.0756 (0.1009)  loss_rpn_box_reg: 0.0211 (0.0629)  time: 1.4947  data: 0.2105  max mem: 9268
Epoch: [0]  [460/581]  eta: 0:01:50  lr: 0.007950  loss: 0.7618 (0.4682)  loss_classifier: 0.3065 (0.1846)  loss_box_reg: 0.3185 (0.1207)  loss_objectness: 0.0819 (0.1006)  loss_rpn_box_reg: 0.0263 (0.0623)  time: 1.5037  data: 0.2171  max mem: 9268
Epoch: [0]  [470/581]  eta: 0:01:42  lr: 0.008123  loss: 0.6012 (0.4700)  loss_classifier: 0.2546 (0.1857)  loss_box_reg: 0.3017 (0.1231)  loss_objectness: 0.0583 (0.0996)  loss_rpn_box_reg: 0.0263 (0.0616)  time: 1.5048  data: 0.2191  max mem: 9268
Epoch: [0]  [480/581]  eta: 0:01:34  lr: 0.008295  loss: 0.5096 (0.4708)  loss_classifier: 0.1917 (0.1856)  loss_box_reg: 0.2443 (0.1261)  loss_objectness: 0.0366 (0.0983)  loss_rpn_box_reg: 0.0219 (0.0608)  time: 1.4995  data: 0.2180  max mem: 9268
Epoch: [0]  [490/581]  eta: 0:01:26  lr: 0.008467  loss: 0.5060 (0.4704)  loss_classifier: 0.1679 (0.1851)  loss_box_reg: 0.2498 (0.1283)  loss_objectness: 0.0305 (0.0969)  loss_rpn_box_reg: 0.0192 (0.0600)  time: 1.5060  data: 0.2204  max mem: 9268
Epoch: [0]  [500/581]  eta: 0:01:17  lr: 0.008639  loss: 0.3778 (0.4688)  loss_classifier: 0.1350 (0.1845)  loss_box_reg: 0.1993 (0.1294)  loss_objectness: 0.0282 (0.0956)  loss_rpn_box_reg: 0.0182 (0.0593)  time: 1.5151  data: 0.2215  max mem: 9268
Epoch: [0]  [510/581]  eta: 0:01:08  lr: 0.008812  loss: 0.4375 (0.4712)  loss_classifier: 0.1651 (0.1865)  loss_box_reg: 0.1535 (0.1299)  loss_objectness: 0.0357 (0.0957)  loss_rpn_box_reg: 0.0172 (0.0591)  time: 1.5165  data: 0.2255  max mem: 9268
Epoch: [0]  [520/581]  eta: 0:00:59  lr: 0.008984  loss: 0.5171 (0.4715)  loss_classifier: 0.2410 (0.1868)  loss_box_reg: 0.1371 (0.1303)  loss_objectness: 0.0660 (0.0952)  loss_rpn_box_reg: 0.0186 (0.0593)  time: 1.5279  data: 0.2338  max mem: 9268
Epoch: [0]  [530/581]  eta: 0:00:50  lr: 0.009156  loss: 0.4152 (0.4705)  loss_classifier: 0.1749 (0.1862)  loss_box_reg: 0.1533 (0.1312)  loss_objectness: 0.0560 (0.0945)  loss_rpn_box_reg: 0.0123 (0.0586)  time: 1.5319  data: 0.2355  max mem: 9268
Epoch: [0]  [540/581]  eta: 0:00:41  lr: 0.009328  loss: 0.3945 (0.4687)  loss_classifier: 0.1424 (0.1851)  loss_box_reg: 0.1940 (0.1323)  loss_objectness: 0.0281 (0.0935)  loss_rpn_box_reg: 0.0110 (0.0579)  time: 1.5247  data: 0.2312  max mem: 9268
Epoch: [0]  [550/581]  eta: 0:00:31  lr: 0.009501  loss: 0.3268 (0.4664)  loss_classifier: 0.0915 (0.1833)  loss_box_reg: 0.1531 (0.1322)  loss_objectness: 0.0423 (0.0928)  loss_rpn_box_reg: 0.0199 (0.0582)  time: 1.5247  data: 0.2297  max mem: 9268
Epoch: [0]  [560/581]  eta: 0:00:21  lr: 0.009673  loss: 0.3885 (0.4672)  loss_classifier: 0.1032 (0.1833)  loss_box_reg: 0.1277 (0.1327)  loss_objectness: 0.0518 (0.0936)  loss_rpn_box_reg: 0.0199 (0.0576)  time: 1.5284  data: 0.2291  max mem: 9268
Epoch: [0]  [570/581]  eta: 0:00:11  lr: 0.009845  loss: 0.4448 (0.4660)  loss_classifier: 0.1628 (0.1828)  loss_box_reg: 0.1553 (0.1333)  loss_objectness: 0.0547 (0.0929)  loss_rpn_box_reg: 0.0097 (0.0570)  time: 1.5305  data: 0.2303  max mem: 9268
Epoch: [0]  [580/581]  eta: 0:00:01  lr: 0.010000  loss: 0.3470 (0.4634)  loss_classifier: 0.1260 (0.1818)  loss_box_reg: 0.1548 (0.1338)  loss_objectness: 0.0200 (0.0916)  loss_rpn_box_reg: 0.0037 (0.0562)  time: 1.4635  data: 0.2236  max mem: 9268
Epoch: [0] Total time: 0:10:02 (1.0368 s / it)
mkdir: ./code/checkpoints/
finish upload ./code/checkpoints/model_0.pth->./data/training/model_0.pth
Epoch: [1]  [  0/581]  eta: 0:13:33  lr: 0.010000  loss: 0.6443 (0.6443)  loss_classifier: 0.3404 (0.3404)  loss_box_reg: 0.0727 (0.0727)  loss_objectness: 0.1873 (0.1873)  loss_rpn_box_reg: 0.0438 (0.0438)  time: 1.4005  data: 0.5803  max mem: 9268
Epoch: [1]  [ 10/581]  eta: 0:08:14  lr: 0.010000  loss: 0.3522 (0.4644)  loss_classifier: 0.1528 (0.1624)  loss_box_reg: 0.0605 (0.0616)  loss_objectness: 0.1210 (0.1747)  loss_rpn_box_reg: 0.0377 (0.0657)  time: 0.8662  data: 0.0787  max mem: 9268
Epoch: [1]  [ 20/581]  eta: 0:07:51  lr: 0.010000  loss: 0.3545 (0.4479)  loss_classifier: 0.1310 (0.1557)  loss_box_reg: 0.0601 (0.0669)  loss_objectness: 0.0860 (0.1389)  loss_rpn_box_reg: 0.0953 (0.0865)  time: 0.8134  data: 0.0281  max mem: 9268
Epoch: [1]  [ 30/581]  eta: 0:07:38  lr: 0.010000  loss: 0.2923 (0.3884)  loss_classifier: 0.0968 (0.1333)  loss_box_reg: 0.0637 (0.0655)  loss_objectness: 0.0643 (0.1122)  loss_rpn_box_reg: 0.0637 (0.0773)  time: 0.8126  data: 0.0279  max mem: 9268
Epoch: [1]  [ 40/581]  eta: 0:07:27  lr: 0.010000  loss: 0.2923 (0.3864)  loss_classifier: 0.1011 (0.1331)  loss_box_reg: 0.0749 (0.0752)  loss_objectness: 0.0582 (0.1007)  loss_rpn_box_reg: 0.0626 (0.0774)  time: 0.8113  data: 0.0281  max mem: 9268
Epoch: [1]  [ 50/581]  eta: 0:07:16  lr: 0.010000  loss: 0.3579 (0.3803)  loss_classifier: 0.1240 (0.1296)  loss_box_reg: 0.1126 (0.0815)  loss_objectness: 0.0517 (0.0898)  loss_rpn_box_reg: 0.0655 (0.0795)  time: 0.8094  data: 0.0273  max mem: 9268
Epoch: [1]  [ 60/581]  eta: 0:07:07  lr: 0.010000  loss: 0.2635 (0.3567)  loss_classifier: 0.0961 (0.1210)  loss_box_reg: 0.0916 (0.0819)  loss_objectness: 0.0373 (0.0805)  loss_rpn_box_reg: 0.0432 (0.0732)  time: 0.8060  data: 0.0264  max mem: 9268
ignore small bbox < 10 2020-01-14_15_35_18_680.jpg
ignore small bbox < 10 2020-01-14_15_35_28_206.jpg
ignore small bbox < 10 2020-01-14_15_35_59_180.jpg
ignore small bbox < 10 2020-01-14_15_35_59_180.jpg
Epoch: [1]  [ 70/581]  eta: 0:06:57  lr: 0.010000  loss: 0.2284 (0.3550)  loss_classifier: 0.0880 (0.1195)  loss_box_reg: 0.0877 (0.0837)  loss_objectness: 0.0358 (0.0765)  loss_rpn_box_reg: 0.0429 (0.0753)  time: 0.8045  data: 0.0261  max mem: 9268
Epoch: [1]  [ 80/581]  eta: 0:06:49  lr: 0.010000  loss: 0.2862 (0.3438)  loss_classifier: 0.1102 (0.1163)  loss_box_reg: 0.0877 (0.0837)  loss_objectness: 0.0338 (0.0713)  loss_rpn_box_reg: 0.0538 (0.0724)  time: 0.8061  data: 0.0260  max mem: 9268
Epoch: [1]  [ 90/581]  eta: 0:06:40  lr: 0.010000  loss: 0.2428 (0.3332)  loss_classifier: 0.0889 (0.1138)  loss_box_reg: 0.0874 (0.0849)  loss_objectness: 0.0283 (0.0662)  loss_rpn_box_reg: 0.0381 (0.0683)  time: 0.8070  data: 0.0264  max mem: 9268
Epoch: [1]  [100/581]  eta: 0:06:31  lr: 0.010000  loss: 0.2306 (0.3250)  loss_classifier: 0.0804 (0.1112)  loss_box_reg: 0.0742 (0.0845)  loss_objectness: 0.0239 (0.0627)  loss_rpn_box_reg: 0.0363 (0.0666)  time: 0.8049  data: 0.0263  max mem: 9268
Epoch: [1]  [110/581]  eta: 0:06:23  lr: 0.010000  loss: 0.2585 (0.3211)  loss_classifier: 0.0866 (0.1103)  loss_box_reg: 0.0931 (0.0863)  loss_objectness: 0.0239 (0.0591)  loss_rpn_box_reg: 0.0460 (0.0655)  time: 0.8044  data: 0.0263  max mem: 9268
Epoch: [1]  [120/581]  eta: 0:06:14  lr: 0.010000  loss: 0.2743 (0.3184)  loss_classifier: 0.0911 (0.1089)  loss_box_reg: 0.1075 (0.0888)  loss_objectness: 0.0194 (0.0565)  loss_rpn_box_reg: 0.0460 (0.0641)  time: 0.8050  data: 0.0269  max mem: 9268
Epoch: [1]  [130/581]  eta: 0:06:06  lr: 0.010000  loss: 0.2798 (0.3161)  loss_classifier: 0.0830 (0.1069)  loss_box_reg: 0.0996 (0.0896)  loss_objectness: 0.0211 (0.0550)  loss_rpn_box_reg: 0.0572 (0.0646)  time: 0.8048  data: 0.0269  max mem: 9268
Epoch: [1]  [140/581]  eta: 0:05:58  lr: 0.010000  loss: 0.2631 (0.3144)  loss_classifier: 0.0817 (0.1057)  loss_box_reg: 0.0964 (0.0916)  loss_objectness: 0.0253 (0.0533)  loss_rpn_box_reg: 0.0479 (0.0638)  time: 0.8101  data: 0.0277  max mem: 9268
Epoch: [1]  [150/581]  eta: 0:05:54  lr: 0.010000  loss: 0.2685 (0.3158)  loss_classifier: 0.0852 (0.1056)  loss_box_reg: 0.0964 (0.0923)  loss_objectness: 0.0332 (0.0530)  loss_rpn_box_reg: 0.0526 (0.0649)  time: 0.8954  data: 0.0478  max mem: 9268
Epoch: [1]  [160/581]  eta: 0:05:50  lr: 0.010000  loss: 0.3625 (0.3195)  loss_classifier: 0.0837 (0.1046)  loss_box_reg: 0.0788 (0.0930)  loss_objectness: 0.0395 (0.0532)  loss_rpn_box_reg: 0.0864 (0.0687)  time: 0.9716  data: 0.0671  max mem: 9268
Epoch: [1]  [170/581]  eta: 0:05:45  lr: 0.010000  loss: 0.3283 (0.3204)  loss_classifier: 0.0998 (0.1045)  loss_box_reg: 0.1127 (0.0949)  loss_objectness: 0.0366 (0.0524)  loss_rpn_box_reg: 0.0851 (0.0687)  time: 0.9635  data: 0.0676  max mem: 9268
Epoch: [1]  [180/581]  eta: 0:05:38  lr: 0.010000  loss: 0.2690 (0.3164)  loss_classifier: 0.0798 (0.1027)  loss_box_reg: 0.1079 (0.0951)  loss_objectness: 0.0326 (0.0510)  loss_rpn_box_reg: 0.0524 (0.0675)  time: 0.9433  data: 0.0675  max mem: 9268
Epoch: [1]  [190/581]  eta: 0:05:32  lr: 0.010000  loss: 0.2349 (0.3114)  loss_classifier: 0.0721 (0.1008)  loss_box_reg: 0.1009 (0.0956)  loss_objectness: 0.0175 (0.0494)  loss_rpn_box_reg: 0.0293 (0.0656)  time: 0.9322  data: 0.0678  max mem: 9268
Epoch: [1]  [200/581]  eta: 0:05:24  lr: 0.010000  loss: 0.2197 (0.3078)  loss_classifier: 0.0636 (0.0993)  loss_box_reg: 0.1009 (0.0961)  loss_objectness: 0.0149 (0.0483)  loss_rpn_box_reg: 0.0177 (0.0641)  time: 0.9235  data: 0.0688  max mem: 9268
Epoch: [1]  [210/581]  eta: 0:05:17  lr: 0.010000  loss: 0.2564 (0.3077)  loss_classifier: 0.0717 (0.0987)  loss_box_reg: 0.1009 (0.0961)  loss_objectness: 0.0261 (0.0477)  loss_rpn_box_reg: 0.0363 (0.0652)  time: 0.9060  data: 0.0683  max mem: 9268
Epoch: [1]  [220/581]  eta: 0:05:09  lr: 0.010000  loss: 0.2774 (0.3074)  loss_classifier: 0.0789 (0.0976)  loss_box_reg: 0.0916 (0.0956)  loss_objectness: 0.0356 (0.0483)  loss_rpn_box_reg: 0.0573 (0.0658)  time: 0.9095  data: 0.0676  max mem: 9268
Epoch: [1]  [230/581]  eta: 0:05:01  lr: 0.010000  loss: 0.2888 (0.3082)  loss_classifier: 0.0857 (0.0974)  loss_box_reg: 0.0973 (0.0962)  loss_objectness: 0.0450 (0.0487)  loss_rpn_box_reg: 0.0505 (0.0659)  time: 0.9066  data: 0.0678  max mem: 9268
Epoch: [1]  [240/581]  eta: 0:04:53  lr: 0.010000  loss: 0.2657 (0.3063)  loss_classifier: 0.0807 (0.0969)  loss_box_reg: 0.1113 (0.0969)  loss_objectness: 0.0394 (0.0482)  loss_rpn_box_reg: 0.0327 (0.0644)  time: 0.8989  data: 0.0687  max mem: 9268
Epoch: [1]  [250/581]  eta: 0:04:45  lr: 0.010000  loss: 0.2414 (0.3035)  loss_classifier: 0.0765 (0.0964)  loss_box_reg: 0.1096 (0.0970)  loss_objectness: 0.0277 (0.0472)  loss_rpn_box_reg: 0.0218 (0.0628)  time: 0.9055  data: 0.0681  max mem: 9268
Epoch: [1]  [260/581]  eta: 0:04:37  lr: 0.010000  loss: 0.1967 (0.2990)  loss_classifier: 0.0681 (0.0951)  loss_box_reg: 0.0954 (0.0972)  loss_objectness: 0.0143 (0.0458)  loss_rpn_box_reg: 0.0138 (0.0609)  time: 0.9042  data: 0.0674  max mem: 9268
Epoch: [1]  [270/581]  eta: 0:04:29  lr: 0.010000  loss: 0.1922 (0.2962)  loss_classifier: 0.0617 (0.0942)  loss_box_reg: 0.0954 (0.0975)  loss_objectness: 0.0111 (0.0449)  loss_rpn_box_reg: 0.0135 (0.0595)  time: 0.9019  data: 0.0679  max mem: 9268
Epoch: [1]  [280/581]  eta: 0:04:20  lr: 0.010000  loss: 0.2217 (0.2947)  loss_classifier: 0.0736 (0.0940)  loss_box_reg: 0.1016 (0.0982)  loss_objectness: 0.0169 (0.0440)  loss_rpn_box_reg: 0.0183 (0.0585)  time: 0.8953  data: 0.0672  max mem: 9268
Epoch: [1]  [290/581]  eta: 0:04:12  lr: 0.010000  loss: 0.2401 (0.2927)  loss_classifier: 0.0694 (0.0931)  loss_box_reg: 0.1053 (0.0984)  loss_objectness: 0.0169 (0.0431)  loss_rpn_box_reg: 0.0366 (0.0581)  time: 0.8824  data: 0.0655  max mem: 9268
Epoch: [1]  [300/581]  eta: 0:04:03  lr: 0.010000  loss: 0.2109 (0.2895)  loss_classifier: 0.0601 (0.0919)  loss_box_reg: 0.0942 (0.0983)  loss_objectness: 0.0095 (0.0420)  loss_rpn_box_reg: 0.0303 (0.0572)  time: 0.8738  data: 0.0652  max mem: 9268
Epoch: [1]  [310/581]  eta: 0:03:54  lr: 0.010000  loss: 0.2141 (0.2902)  loss_classifier: 0.0703 (0.0916)  loss_box_reg: 0.0986 (0.0986)  loss_objectness: 0.0133 (0.0416)  loss_rpn_box_reg: 0.0314 (0.0584)  time: 0.8666  data: 0.0645  max mem: 9268
Epoch: [1]  [320/581]  eta: 0:03:46  lr: 0.010000  loss: 0.2713 (0.2906)  loss_classifier: 0.0708 (0.0909)  loss_box_reg: 0.0986 (0.0986)  loss_objectness: 0.0230 (0.0410)  loss_rpn_box_reg: 0.0660 (0.0600)  time: 0.8691  data: 0.0655  max mem: 9268
Epoch: [1]  [330/581]  eta: 0:03:37  lr: 0.010000  loss: 0.2713 (0.2903)  loss_classifier: 0.0685 (0.0907)  loss_box_reg: 0.0868 (0.0987)  loss_objectness: 0.0235 (0.0407)  loss_rpn_box_reg: 0.0675 (0.0602)  time: 0.8767  data: 0.0698  max mem: 9268
Epoch: [1]  [340/581]  eta: 0:03:29  lr: 0.010000  loss: 0.2550 (0.2891)  loss_classifier: 0.0812 (0.0906)  loss_box_reg: 0.1018 (0.0988)  loss_objectness: 0.0229 (0.0403)  loss_rpn_box_reg: 0.0333 (0.0594)  time: 0.8783  data: 0.0717  max mem: 9268
Epoch: [1]  [350/581]  eta: 0:03:20  lr: 0.010000  loss: 0.2457 (0.2899)  loss_classifier: 0.0896 (0.0910)  loss_box_reg: 0.1069 (0.0995)  loss_objectness: 0.0214 (0.0405)  loss_rpn_box_reg: 0.0240 (0.0590)  time: 0.8628  data: 0.0665  max mem: 9268
Epoch: [1]  [360/581]  eta: 0:03:11  lr: 0.010000  loss: 0.2457 (0.2888)  loss_classifier: 0.0851 (0.0908)  loss_box_reg: 0.1070 (0.0997)  loss_objectness: 0.0231 (0.0400)  loss_rpn_box_reg: 0.0240 (0.0583)  time: 0.8501  data: 0.0618  max mem: 9268
Epoch: [1]  [370/581]  eta: 0:03:02  lr: 0.010000  loss: 0.2535 (0.2884)  loss_classifier: 0.0702 (0.0904)  loss_box_reg: 0.0995 (0.0999)  loss_objectness: 0.0231 (0.0398)  loss_rpn_box_reg: 0.0368 (0.0582)  time: 0.8498  data: 0.0626  max mem: 9268
Epoch: [1]  [380/581]  eta: 0:02:53  lr: 0.010000  loss: 0.2535 (0.2873)  loss_classifier: 0.0705 (0.0902)  loss_box_reg: 0.1048 (0.1002)  loss_objectness: 0.0214 (0.0393)  loss_rpn_box_reg: 0.0439 (0.0576)  time: 0.8408  data: 0.0617  max mem: 9268
Epoch: [1]  [390/581]  eta: 0:02:45  lr: 0.010000  loss: 0.2247 (0.2861)  loss_classifier: 0.0699 (0.0899)  loss_box_reg: 0.1014 (0.1004)  loss_objectness: 0.0157 (0.0387)  loss_rpn_box_reg: 0.0244 (0.0570)  time: 0.8444  data: 0.0623  max mem: 9268
Epoch: [1]  [400/581]  eta: 0:02:36  lr: 0.010000  loss: 0.2173 (0.2870)  loss_classifier: 0.0691 (0.0904)  loss_box_reg: 0.1014 (0.1015)  loss_objectness: 0.0168 (0.0383)  loss_rpn_box_reg: 0.0397 (0.0569)  time: 0.8530  data: 0.0636  max mem: 9268
Epoch: [1]  [410/581]  eta: 0:02:27  lr: 0.010000  loss: 0.3234 (0.2890)  loss_classifier: 0.1057 (0.0909)  loss_box_reg: 0.1389 (0.1023)  loss_objectness: 0.0258 (0.0381)  loss_rpn_box_reg: 0.0687 (0.0576)  time: 0.8518  data: 0.0629  max mem: 9268
Epoch: [1]  [420/581]  eta: 0:02:19  lr: 0.010000  loss: 0.3741 (0.2903)  loss_classifier: 0.0933 (0.0907)  loss_box_reg: 0.1322 (0.1028)  loss_objectness: 0.0340 (0.0386)  loss_rpn_box_reg: 0.0733 (0.0582)  time: 0.8531  data: 0.0636  max mem: 9268
Epoch: [1]  [430/581]  eta: 0:02:12  lr: 0.010000  loss: 0.3426 (0.2916)  loss_classifier: 0.0961 (0.0923)  loss_box_reg: 0.1161 (0.1031)  loss_objectness: 0.0383 (0.0386)  loss_rpn_box_reg: 0.0422 (0.0576)  time: 1.1091  data: 0.1714  max mem: 9268
Epoch: [1]  [440/581]  eta: 0:02:05  lr: 0.010000  loss: 0.4170 (0.2982)  loss_classifier: 0.2368 (0.0967)  loss_box_reg: 0.1587 (0.1061)  loss_objectness: 0.0297 (0.0385)  loss_rpn_box_reg: 0.0149 (0.0569)  time: 1.4198  data: 0.2416  max mem: 9268
ignore small bbox < 10 2021-05-16-17-01-48.jpg
Epoch: [1]  [450/581]  eta: 0:01:58  lr: 0.010000  loss: 0.5809 (0.3038)  loss_classifier: 0.2574 (0.0993)  loss_box_reg: 0.2349 (0.1093)  loss_objectness: 0.0327 (0.0387)  loss_rpn_box_reg: 0.0176 (0.0565)  time: 1.4820  data: 0.2079  max mem: 9268
Epoch: [1]  [460/581]  eta: 0:01:50  lr: 0.010000  loss: 0.5490 (0.3089)  loss_classifier: 0.2095 (0.1014)  loss_box_reg: 0.2681 (0.1128)  loss_objectness: 0.0389 (0.0387)  loss_rpn_box_reg: 0.0237 (0.0559)  time: 1.4890  data: 0.2132  max mem: 9268
Epoch: [1]  [470/581]  eta: 0:01:42  lr: 0.010000  loss: 0.4407 (0.3112)  loss_classifier: 0.1586 (0.1026)  loss_box_reg: 0.2259 (0.1148)  loss_objectness: 0.0310 (0.0386)  loss_rpn_box_reg: 0.0223 (0.0553)  time: 1.4900  data: 0.2186  max mem: 9268
Epoch: [1]  [480/581]  eta: 0:01:34  lr: 0.010000  loss: 0.4024 (0.3131)  loss_classifier: 0.1430 (0.1034)  loss_box_reg: 0.2070 (0.1169)  loss_objectness: 0.0292 (0.0383)  loss_rpn_box_reg: 0.0192 (0.0546)  time: 1.4975  data: 0.2195  max mem: 9268
Epoch: [1]  [490/581]  eta: 0:01:26  lr: 0.010000  loss: 0.4024 (0.3147)  loss_classifier: 0.1268 (0.1040)  loss_box_reg: 0.2243 (0.1189)  loss_objectness: 0.0222 (0.0379)  loss_rpn_box_reg: 0.0178 (0.0538)  time: 1.5010  data: 0.2168  max mem: 9268
Epoch: [1]  [500/581]  eta: 0:01:17  lr: 0.010000  loss: 0.3164 (0.3147)  loss_classifier: 0.1114 (0.1043)  loss_box_reg: 0.1677 (0.1197)  loss_objectness: 0.0179 (0.0376)  loss_rpn_box_reg: 0.0149 (0.0531)  time: 1.5034  data: 0.2182  max mem: 9268
Epoch: [1]  [510/581]  eta: 0:01:09  lr: 0.010000  loss: 0.3600 (0.3181)  loss_classifier: 0.1273 (0.1070)  loss_box_reg: 0.1602 (0.1206)  loss_objectness: 0.0209 (0.0378)  loss_rpn_box_reg: 0.0135 (0.0528)  time: 1.5124  data: 0.2269  max mem: 9268
Epoch: [1]  [520/581]  eta: 0:00:59  lr: 0.010000  loss: 0.4151 (0.3200)  loss_classifier: 0.2156 (0.1084)  loss_box_reg: 0.1488 (0.1211)  loss_objectness: 0.0334 (0.0379)  loss_rpn_box_reg: 0.0176 (0.0527)  time: 1.5179  data: 0.2299  max mem: 9268
Epoch: [1]  [530/581]  eta: 0:00:50  lr: 0.010000  loss: 0.2731 (0.3189)  loss_classifier: 0.0928 (0.1077)  loss_box_reg: 0.1462 (0.1215)  loss_objectness: 0.0273 (0.0377)  loss_rpn_box_reg: 0.0081 (0.0519)  time: 1.5230  data: 0.2286  max mem: 9268
Epoch: [1]  [540/581]  eta: 0:00:41  lr: 0.010000  loss: 0.2554 (0.3182)  loss_classifier: 0.0752 (0.1073)  loss_box_reg: 0.1462 (0.1219)  loss_objectness: 0.0203 (0.0375)  loss_rpn_box_reg: 0.0071 (0.0515)  time: 1.5244  data: 0.2302  max mem: 9268
Epoch: [1]  [550/581]  eta: 0:00:31  lr: 0.010000  loss: 0.2724 (0.3179)  loss_classifier: 0.0712 (0.1065)  loss_box_reg: 0.1069 (0.1214)  loss_objectness: 0.0281 (0.0380)  loss_rpn_box_reg: 0.0174 (0.0519)  time: 1.5213  data: 0.2313  max mem: 9268
Epoch: [1]  [560/581]  eta: 0:00:21  lr: 0.010000  loss: 0.2812 (0.3182)  loss_classifier: 0.0707 (0.1065)  loss_box_reg: 0.0874 (0.1208)  loss_objectness: 0.0668 (0.0391)  loss_rpn_box_reg: 0.0216 (0.0517)  time: 1.5200  data: 0.2313  max mem: 9268
Epoch: [1]  [570/581]  eta: 0:00:11  lr: 0.010000  loss: 0.3402 (0.3182)  loss_classifier: 0.1095 (0.1068)  loss_box_reg: 0.1009 (0.1210)  loss_objectness: 0.0355 (0.0392)  loss_rpn_box_reg: 0.0123 (0.0513)  time: 1.5203  data: 0.2294  max mem: 9268
Epoch: [1]  [580/581]  eta: 0:00:01  lr: 0.010000  loss: 0.2308 (0.3167)  loss_classifier: 0.1049 (0.1067)  loss_box_reg: 0.1009 (0.1207)  loss_objectness: 0.0227 (0.0388)  loss_rpn_box_reg: 0.0042 (0.0505)  time: 1.4580  data: 0.2216  max mem: 9268
Epoch: [1] Total time: 0:10:02 (1.0371 s / it)
finish upload ./code/checkpoints/model_1.pth->./data/training/model_1.pth
upload model_1.pth -> ./submission/model/model_best.pth

4.完成训练,进行测试模型

import json
import inspect
import os
import sys

root_path = os.path.abspath(inspect.getsourcefile(lambda:0))
root_path = '/'.join(root_path.split('/')[:-2])

sys.path.append('./code')

import customize_service as cs

imageService = cs.ImageClassificationService('model_best.pth', './submission/model/model_best.pth')

# 可以把其他预测的图片放在src/image文件夹下,替换下面的文件名称,进行预测
data = imageService.inference("./image/火花塞.jpg")
print(data)
Using GPU for inference
model already
preprocess time: 264.737606048584ms
infer time: 125.19049644470215ms
postprocess time: 0.3173351287841797ms
latency: 390.2454376220703ms
{'result': [{'boxes': [[549.6098022460938, 1353.4212646484375, 856.999267578125, 1626.158203125], [3011.467529296875, 965.0498046875, 3421.206787109375, 1304.65625], [2989.284912109375, 968.4557495117188, 3422.8388671875, 1304.9481201171875], [576.8909301757812, 1340.2587890625, 877.2547607421875, 1652.6400146484375], [2945.8115234375, 964.2322387695312, 3421.817626953125, 1301.81884765625], [1777.4849853515625, 929.34130859375, 2139.784423828125, 1631.8582763671875], [2151.7578125, 1019.7630004882812, 2980.9716796875, 1444.9742431640625], [1126.210693359375, 1270.072998046875, 1245.9949951171875, 1381.199951171875], [2583.181640625, 988.2589721679688, 2990.323974609375, 1420.2467041015625], [3055.580322265625, 990.49560546875, 3369.37646484375, 1279.698974609375]], 'labels': [9, 10, 9, 10, 7, 10, 10, 8, 10, 8], 'scores': [0.8874596953392029, 0.8255313634872437, 0.20651447772979736, 0.181894451379776, 0.1192605122923851, 0.10301008820533752, 0.09060976654291153, 0.05289372429251671, 0.0503094345331192, 0.050185371190309525]}]}
/home/ma-user/anaconda3/envs/PyTorch-1.4/lib/python3.7/site-packages/torchvision/ops/boxes.py:101: UserWarning: This overload of nonzero is deprecated:
	nonzero()
Consider using one of the following signatures instead:
	nonzero(*, bool as_tuple) (Triggered internally at  /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
  keep = keep.nonzero().squeeze(1)

至此,本案例结束!

关联资产

汽车零部件表面缺陷识别数据集

2021数字化转型创新应用大赛·创客赛道初赛竞赛数据集

数据集
aicompetitions

43个月以前

暂无数据

输出样例

名称
model_best.pth 该文件不支持代码预览

作者相关案例

汽车零部件的表面缺陷识别
发布于41个月以前

暂无数据

近7天热度

热门案例推荐

使用PPO算法玩超级马里奥兄弟
ModelArts开发者 发布于45个月以前
使用DQN算法玩2048游戏
ModelArts开发者 发布于45个月以前
使用强化学习AlphaZero算法训练五子棋AI
ModelArts开发者 发布于44个月以前
与中国象棋AI对战!
ModelArts开发者 发布于43个月以前
安全帽检测
ModelArts 发布于43个月以前

暂无数据

评论0

2

2人已评价

  • 0%
  • 0%
  • 50%
  • 0%
  • 50%

登录后评论