- 资产集市
- 教学
- 实践
- AI说
- 案例库
- 生态合作
- 专区
中国站
简体中文活动对象:华为云电销客户及渠道伙伴客户可参与消费满送活动,其他客户参与前请咨询客户经理
活动时间: 2020年8月12日-2020年9月11日
活动期间,华为云用户通过活动页面购买云服务,或使用上云礼包优惠券在华为云官网新购云服务,累计新购实付付费金额达到一定额度,可兑换相应的实物礼品。活动优惠券可在本活动页面中“上云礼包”等方式获取,在华为云官网直接购买(未使用年中云钜惠活动优惠券)或参与其他活动的订单付费金额不计入统计范围内;
活动对象:华为云电销客户及渠道伙伴客户可参与消费满送活动,其他客户参与前请咨询客户经理
展开更多 收起
The encoder-decoder framework is state-of-the-art for offline semantic image segmentation. Since the rise in autonomous systems, real-time computation is increasingly desirable. In this paper, we introduce fast segmentation convolutional neural network (Fast-SCNN), an above realtime semantic segmentation model on high resolution image data (1024 × 2048px) suited to efficient computation on embedded devices with low memory. Building on existing two-branch methods for fast segmentation, we introduce our ‘learning to downsample’ module which computes lowlevel features for multiple resolution branches simultaneously. Our network combines spatial detail at high resolution with deep features extracted at lower resolution, yielding an accuracy of 68.0% mean intersection over union at 123.5 frames per second on Cityscapes. We also show that large scale pre-training is unnecessary. We thoroughly validate our metric in experiments with ImageNet pre-training and the coarse labeled data of Cityscapes. Finally, we show even faster computation with competitive results on subsampled inputs, without any network modifications.
Recent dominant approaches for scene text recognition are mainly based on convolutional neural network (CNN) and recurrent neural network (RNN), where the CNN processes images and the RNN generates character sequences. Different from these methods, we propose an attention-based architecture1 which is completely based on CNNs. The distinctive characteristics of our method include: (1) the method follows encoder-decoder architecture, in which the encoder is a two-dimensional residual CNN and the decoder is a deep one-dimensional CNN. (2) An attention module that captures visual cues, and a language module that models linguistic rules are designed equally in the decoder. Therefore the attention and language can be viewed as an ensemble to boost predictions jointly. (3) Instead of using a single loss from language aspect, multiple losses from attention and language are accumulated for training the networks in an end-to-end way. We conduct experiments on standard datasets for scene text recognition, including Street View Text, IIIT5K and ICDAR datasets. The experimental results show our CNN-based method has achieved state-of-the-art performance on several benchmark datasets, even without the use of RNN.
Although two-stage object detectors have continuously advanced the state-of-the-art performance in recent years, the training process itself is far from crystal. In this work, we first point out the inconsistency problem between the fixed network settings and the dynamic training procedure, which greatly affects the performance. For example, the fixed label assignment strategy and regression loss function cannot fit the distribution change of proposals and thus are harmful to training high quality detectors. Consequently, we propose Dynamic R-CNN to adjust the label assignment criteria (IoU threshold) and the shape of regression loss function (parameters of SmoothL1 Loss) automatically based on the statistics of proposals during training. This dynamic design makes better use of the training samples and pushes the detector to fit more high quality samples. Specifically, our method improves upon ResNet-50-FPN baseline with 1.9% AP and 5.5% AP90 on the MS COCO dataset with no extra overhead. Codes and models are available at https://github.com/hkzhang95/DynamicRCNN
In this work, we introduce Panoptic-DeepLab, a simple, strong, and fast system for panoptic segmentation, aiming to establish a solid baseline for bottom-up methods that can achieve comparable performance of two-stage methods while yielding fast inference speed. In particular, PanopticDeepLab adopts the dual-ASPP and dual-decoder structures specific to semantic, and instance segmentation, respectively. The semantic segmentation branch is the same as the typical design of any semantic segmentation model (e.g., DeepLab), while the instance segmentation branch is class-agnostic, involving a simple instance center regression. As a result, our single Panoptic-DeepLab simultaneously ranks first at all three Cityscapes benchmarks, setting the new state-of-art of 84.2% mIoU, 39.0% AP, and 65.5% PQ on test set. Additionally, equipped with MobileNetV3, Panoptic-DeepLab runs nearly in real-time with a single 1025 × 2049 image (15.8 frames per second), while achieving a competitive performance on Cityscapes (54.1 PQ% on test set). On Mapillary Vistas test set, our ensemble of six models attains 42.7% PQ, outperforming the challenge winner in 2018 by a healthy margin of 1.5%. Finally, our Panoptic-DeepLab also performs on par with several topdown approaches on the challenging COCO dataset. For the first time, we demonstrate a bottom-up approach could deliver state-of-the-art results on panoptic segmentation.
A challenging aspect of scene text recognition is to handle text with distortions or irregular layout. In particular, perspective text and curved text are common in natural scenes and are difficult to recognize. In this work, we introduce ASTER, an end-to-end neural network model that comprises a rectification network and a recognition network. The rectification network adaptively transforms an input image into a new one, rectifying the text in it. It is powered by a flexible Thin-Plate Spline transformation which handles a variety of text irregularities and is trained without human annotations. The recognition network is an attentional sequence-to-sequence model that predicts a character sequence directly from the rectified image. The whole model is trained end to end, requiring only images and their groundtruth text. Through extensive experiments, we verify the effectiveness of the rectification and demonstrate the state-of-the-art recognition performance of ASTER. Furthermore, we demonstrate that ASTER is a powerful component in end-to-end recognition systems, for its ability to enhance the detector.
The ``shared head for classification and localization’’ (sibling head), firstly denominated in Fast RCNN~ cite{girshick2015fast}, has been leading the fashion of the object detection community in the past five years. This paper provides the observation that the spatial misalignment between the two object functions in the sibling head can considerably hurt the training process, but this misalignment can be resolved by a very simple operator called task-aware spatial disentanglement (TSD). Considering the classification and regression, TSD decouples them from the spatial dimension by generating two disentangled proposals for them, which are estimated by the shared proposal. This is inspired by the natural insight that for one instance, the features in some salient area may have rich information for classification while these around the boundary may be good at bounding box regression. Surprisingly, this simple design can boost all backbones and models on both MS COCO and Google OpenImage consistently by ~3% mAP. Further, we propose a progressive constraint to enlarge the performance margin between the disentangled and the shared proposals, and gain ~1% more mAP. We show the algname{} breaks through the upper bound of nowadays single-model detector by a large margin (mAP 49.4 with ResNet-101, 51.2 with SENet154), and is the core model of our 1st place solution on the Google OpenImage Challenge 2019.
This is an official pytorch implementation of Deep High-Resolution Representation Learning for Human Pose Estimation. In this work, we are interested in the human pose estimation problem with a focus on learning reliable high-resolution representations. Most existing methods recover high-resolution representations from low-resolution representations produced by a high-to-low resolution network. Instead, our proposed network maintains high-resolution representations through the whole process. We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutli-resolution subnetworks in parallel. We conduct repeated multi-scale fusions such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich high-resolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset.
We propose a simple yet effective proposal-based object detector, aiming at detecting highly-overlapped instances in crowded scenes. The key of our approach is to let each proposal predict a set of correlated instances rather than a single one in previous proposal-based frameworks. Equipped with new techniques such as EMD Loss and Set NMS, our detector can effectively handle the difficulty of detecting highly overlapped objects. On a FPN-Res50 baseline, our detector can obtain 4.9% AP gains on challenging CrowdHuman dataset and 1.0% MR−2 improvements on CityPersons dataset, without bells and whistles. Moreover, on less crowed datasets like COCO, our approach can still achieve moderate improvement, suggesting the proposed method is robust to crowdedness. Code and pre-trained models will be released at this https URL.
We present a new method for efficient high-quality image segmentation of objects and scenes. By analogizing classical computer graphics methods for efficient rendering with over- and undersampling challenges faced in pixel labeling tasks, we develop a unique perspective of image segmentation as a rendering problem. From this vantage, we present the PointRend (Point-based Rendering) neural network module: a module that performs point-based segmentation predictions at adaptively selected locations based on an iterative subdivision algorithm. PointRend can be flexibly applied to both instance and semantic segmentation tasks by building on top of existing state-ofthe-art models. While many concrete implementations of the general idea are possible, we show that a simple design already achieves excellent results. Qualitatively, PointRend outputs crisp object boundaries in regions that are oversmoothed by previous methods. Quantitatively, PointRend yields significant gains on COCO and Cityscapes, for both instance and semantic segmentation. PointRend’s efficiency enables output resolutions that are otherwise impractical in terms of memory or computation compared to existing approaches. Code has been made available at https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend.